首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
Mixed Cu and Mg oxides on nitrogen-rich activated carbon (AC) from Nypha fruticans biomass were characterized and their CO2 adsorption performance was measured. Highly dispersed CuO and MgO nanoparticles on AC was obtained using an ultrasonic-assisted impregnation method. The optimum adsorbent is 5%CuO–25%MgO/AC having good surface properties of high surface area, pores volume and low particles agglomeration. The higher content of MgO of 5%CuO–25%MgO/AC adsorbent contributes to less metal carbide formation which increases their porosity, surface area and surface basicity. XPS analysis showed some amount of nitrogen content on the surface of the adsorbent which increased their surface basicity towards selective CO2 adsorption. The presence of moisture accelerated the CO2 chemisorption to form a hydroxyl layer on the surfaces. The 5%CuO–25%MgO/AC adsorbent successfully adsorbed CO2 via physisorption and chemisorption of 14.8 and 36.2 wt%, respectively. It was significantly higher than fresh AC with better selectivity to CO2.  相似文献   
3.
Research on Chemical Intermediates - Hydrogen is considered a promising energy carrier for the future, especially for clean energy generation via fuel cell technologies. Formic acid is one of the...  相似文献   
4.
Journal of Solid State Electrochemistry - Nickel/scandia-ceria-stabilized-zirconia (Ni/10Sc1CeSZ) cermet is a potential anode for solid oxide fuel cells. The anode powder is prepared through a...  相似文献   
5.
This study focuses on the synthesis, characterization, and evaluation of the performance of core shell nanostructure adsorbent for hydrogen sulfide (H2S) capture. Commercial coconut shell activated carbon (CAC) and commercial mixed gas of 5000 ppm H2S balanced N2 were used. With different preparation techniques, the CAC was modified by core shell impregnation with zinc oxide (ZnO), titanium oxide (TiO2), potassium hydroxide (KOH), and zinc acetate (ZnAC2). The core structure was prepared with CAC impregnated by single chemical and double chemical labelled with ZnAC2-CAC (single chemical), ZnAC2/KOH-CAC, ZnAC2/ZnO-CAC, and ZnAC2/TiO2-CAC. Then, the prepared core was layered either with KOH, TiO2, NH3, or TEOS for the shell. The synthesized adsorbents were characterized in physical and chemical characterization through scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyzers. Operation of the adsorber column takes place at ambient temperature, with absolute pressure at 1.5 bar. The H2S gas was fed into the column at 5.5 L/min and the loaded adsorbents were 150 g. The performance of synthesized adsorbent was analyzed through the adsorbent’s capability in capturing H2S gas. Based on the results, ZnAc2/ZnO/CAC_WOS shows a better adsorption capacity with 1.17 mg H2S/g and a 53% increment compared to raw CAC. However, the degradation of the adsorbents was higher compared to ZnAc2/ZnO/CAC_OS and to ZnAc2/ZnO/CAC_WS ZnAc2/ZnO/CAC_OS. The presence of silica as a shell has potentially increased the adsorbent’s stability in several cycles of adsorption-desorption.  相似文献   
6.
We introduce an experimental platform designed around a thermomechanical helium fountain, which is aimed at investigating spectroscopy and dynamics of atoms and molecules in the superfluid and at its vapor interface. Laser ablation of copper, efficient cooling and transport of Cu and Cu(2) through helium vapor (1.5 K < T < 20 K), formation of linear and T-shaped Cu(2)-He complexes, and their continuous evolution into large Cu(2)-He(n) clusters and droplets are among the processes that are illustrated. Reflection is the dominant quantum scattering channel of translationally cold copper atoms (T = 1.7 K) at the fountain interface. Cu(2) dimers mainly travel through the fountain unimpeded. However, the conditions of fountain flow and transport of molecules can be controlled to demonstrate injection and, in particular, injection into a nondivergent columnar fountain with a plug velocity of about 1 m/s. The experimental observables are interpreted with the aid of bosonic density functional theory calculations and ab initio interaction potentials.  相似文献   
7.
In this work, the performance of three heterogeneous catalysts, namely potassium hydroxide/γ-alumina, bulk calcium oxide, and nano-calcium oxide, in comparison with the homogeneous potassium hydroxide was studied in the transesterification of palm oil to produce methyl esters and glycerol. The physical and chemical properties of the heterogeneous catalysts were thoroughly characterised and determined using a number of analytical methods to assess their catalytic activities prior to transesterification. The reaction products were analysed using liquid chromatography and their properties were quantified based on the American Society of Testing and Materials and United State Pharmacopoeia standard methods. At the 65°C reaction temperature, the oil-to-methanol mole ratio of 1: 15, 2.5 h of the reaction time, and catalyst (φ r = 1: 40), potassium hydroxide, potassium hydroxide/γ-alumina, nano-calcium oxide, and bulk calcium oxide gave methyl ester yields of 97 %, 96 %, 94 %, and 90 %, respectively. The impregnation of γ-alumina with potassium hydroxide displayed a catalytic performance comparable with the performance of potassium hydroxide where the former could be physically separated via filtration resulting in a relatively greater purity of products. Other advantages included the longer reusability of the catalyst and more active sites with lower by-product formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号