首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   10篇
物理学   2篇
  2014年   1篇
  2010年   1篇
  2007年   1篇
  2003年   1篇
  2001年   2篇
  1990年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
Potential surfaces of the CO2 molecule for the ground and excited 3 B 2, 1 B 2 electronic states are calculated by quantum chemistry methods. The calculation of the spin-orbit coupling in the molecule shows a large the matrix element, which removes the prohibition for the dissociation-recombination process CO2(X 1Σ) + M ? CO(X 1Σ) + O(3 P) + M. The barrier on the potential curve for 3 B 2, the energy of which exceeds the limit of dissociation into components in the ground states, explains the data on the dissociation and recombination energies measured in experiments with shock tubes. The absorption cross section of CO2 molecules in the UV spectral region measured at high temperatures allowed us to plot branches of potential curves near their minima for two upper singlet states assigned to the 1 B 2 and 1 A 2 symmetry.  相似文献   
3.
The nine-dimensional potential energy surface for proton tunneling in the nonrigid C2H+ 3 cation was constructed from quantum-chemical data [MP4SDQ(T)/6-311++G(3df,3pd)] on the equilibrium geometry, energy, frequencies, and eigenvectors of the normal vibrations at the stationary points and transition states using the theory of isodynamic symmetry groups along the tunneling path.  相似文献   
4.
A system modelling the photochemical abstraction of a hydrogen atom by ketones in alcohols is calculated by the semiempirical INDO and MINDO/3 methods with allowance for the configuration interaction in the singly and doubly excited states. The states participating in the elimination reaction and the electronic rearrangement taking place in the course of the reaction are traced on the basis of an analysis of the wave functions and the electron and spin densities. It is established that the state of the ketone which participates in hydrogen abstraction is a lowest triplet state of the n* type, which is formed through the avoidance of intersections of several states of different orbital type 3*, 3n* and the charge-transfer state.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 4, pp. 476–480, July–August, 1989.  相似文献   
5.
6.
7.
Deionized (DI) water contaminated with Salmonella typhimurium (S. typhimurium) bacteria was disinfected by alternating current. Ammonium sulfate was used as electrolyte. Disinfection was carried out in the circulation system including an electrochemical cell with stainless steel electrodes. The process efficiency was estimated and the number of killed bacteria was directly proportional to the water treatment time and concentration of hydroxyl radicals generated by electrolysis. The presence of OH radicals was detected with N,N-dimethyl-p-nitrosoaniline (RNO) used as a spin trap. Similar experiments were carried out with water remaining after poultry washing at poultry farms and additionally contaminated with S. typhimurium bacteria. Measures were recommended to increase the process efficiency and decrease the water treatment time.  相似文献   
8.
9.
The six-dimensional torsion-vibration Hamiltonian of the H2O2 molecule and its H/D- and 18O/16O-isotopomers is derived. The Hamiltonian includes the kinetic energy operator, which depends on the tunneling coordinate, and the potential energy surface represented as a quartic polynomial with respect to the small-amplitude transverse coordinates. Parameters of the Hamiltonian were obtained from DFT calculations of the equilibrium geometries, eigenvectors, and eigenfrequencies of normal vibrations at the stationary points corresponding to the ground state and both the cis- and trans-transition states, carried out with the B3LYP density functional and 6-311+G(2d,p) basis set. The quantum dynamics problem is solved using the perturbative instanton approach generalized for the excited states situated above the barrier top. Vibration-tunneling spectra are calculated for the ground state and low-lying excited states with energies below 2000 cm–1. Strong kinematic and squeezed potential couplings between the large-amplitude torsional motion and bending modes are shown to be responsible for the vibration-assisted tunneling and for the dependence of tunneling splittings on the quantum numbers of small-amplitude transverse vibrations. Mode-specific isotope effects are predicted.  相似文献   
10.
The twenty-one-dimensional Hamiltonian of malonaldehyde molecule and a number of its isotopomers (H/D, 13C/12C) was reconstructed in the low-energy region (<3000 cm–1). Parameters of the Hamiltonian were obtained from quantum-chemical calculations of the energies, equilibrium geometries, and eigenvectors and eigenfrequencies of normal vibrations at the stationary points corresponding to the ground state and transition state. Despite substantial variation of the barrier height calculated using different quantum-chemical methods (from 2.8 to 10.3 kcal mol–1), the corresponding potential energy surfaces can be matched with high accuracy by scaling only one parameter (the semiclassical parameter , which defines the scales of potential, energy, and action). Scaling invariance allows optimization of the Hamiltonian in such a way that the calculated ground-state tunneling splitting coincides with the experimental value. The corresponding potential barrier height is estimated at 4.34±0.4 kcal mol–1. The quantum dynamics problem was solved using the perturbative instanton approach without reducing the number of degrees of freedom. The role of all transverse vibrations in proton tunneling is characterized. Vibration-tunneling spectrum is calculated for the ground state and low-lying excited states and mode-specific isotope effects are predicted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号