首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2011年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Eight deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs): ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and dTTP, were separated with two 15 cm ZIC-pHILIC columns coupled in series, using LC-UV instrumentation. The polymer-based ZIC-pHILIC column gave significantly better separations and peak shape than a silica-based ZIC-HILIC column. Better separations were obtained with isocratic elution as compared to gradient elution. The temperature markedly affected the selectivity and could be used to fine tune separation. The analysis time was also affected by temperature, as lower temperatures surprisingly reduced the retention of the nucleotides. dNTP/NTP standards could be separated in 35 min with a flow rate of 200 μL/min. In Escherichia coli cell culture samples dNTP/NTPs could be selectively separated in 7 0min using a flow rate of 100 μL/min.  相似文献   
2.
Dual-site ethene/1-hexene copolymerizations with MAO-activated (1,2,4-Me3Cp)2ZrCl2 and (Me5Cp)2ZrCl2 catalysts were performed. Copolymers with narrow molecular weight distributions and bimodal short chain branching distributions could be produced. The combined catalyst system demonstrates a number of discrepancies from an expected average behavior of the individual sites. Dual-site (1,2,4-Me3Cp)2ZrCl2/(Me5Cp)2ZrCl2 systems produce copolymers with lower incorporation than expected. Clear evidences for relative activity enhancement of the (Me5Cp)2ZrCl2 catalyst in the mixture were observed in melting endotherms and Crystaf profiles. Molecular weights obtained by the mixture were higher than for any of the individual catalysts. A similar effect is observed for a dual-site system of the (1,2,4-Me3Cp)2ZrCl2 catalyst together with the Me4Si2(Me4Cp)2ZrCl2 catalyst as an alternative to (Me5Cp)2ZrCl2.  相似文献   
3.
Ethene homopolymerizations and copolymerizations with 1‐hexene were catalyzed by methylaluminoxane‐activated (1,2,4‐Me3Cp)2ZrCl2. Investigations of the effects of various pressures on the homopolymerizations and copolymerizations and of the effects of different concentrations of trimethylaluminum (TMA) on the copolymerizations were performed. The characteristics of the ethene/1‐hexene copolymers agreed with expectations for changes in the ethene concentration: the incorporation of 1‐hexene decreased, whereas the melting point and crystallinity increased, with increasing pressure. The main termination mechanism of the homopolymerizations was β‐hydrogen transfer to the monomer. Termination mechanisms resulting in vinylidene unsaturations dominated in the copolymerizations. Standard termination mechanisms producing vinyl and trans‐vinylene unsaturations occurred in parallel and were not influenced by the ethene or TMA concentration. In addition, some chain transfer to TMA, producing saturated end groups after hydrolysis, occurred. Copolymerizations with different additions of TMA, with the other polymerization conditions kept constant, showed that the catalytic productivity [tons of polyethylene/(mol of Zr h)], the 1‐hexene incorporation, and the molecular weight (from gel permeation chromatography) were independent of the TMA concentration. Surprisingly, the vinylidene content decreased almost linearly with increasing TMA concentration. TMA might have coordinated to the catalytic site after 1‐hexene insertion and rotation to the β‐agostic state and, therefore, suppressed the standard termination reactions after 1‐hexene insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2584–2597, 2005  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号