首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   8篇
物理学   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
With the environmental pollution and non‐renewable fossil fuels, it is imperative to develop eco‐friendly, renewable, and highly efficient electrocatalysts for sustainable energy. Herein, a simple electrospinning process used to synthesis Mo2C‐embedded multichannel hollow carbon nanofibers (Mo2C‐MCNFs) and followed by the pyrolysis process. As prepared lotus root‐like nanoarchitecture could offer rich porosity and facilitate the electrolyte infiltration, the Mo2C‐MCNFs delivered favourable catalytic activity for HER and OER. The resultant catalysts exhibit low overpotentials of 114 mV and 320 mV at a current density of 10 mA cm?2 for HER and OER, respectively. Furthermore, using the Mo2C‐MCNFs catalysts as a bifunctional electrode toward overall water splitting, which only needs a small cell voltage of 1.68 V to afford a current density of 10 mA cm?2 in the home‐made alkaline electrolyzer. This interesting work presents a simple and effective strategy to further fabricating tunable nanostructures for energy‐related applications.  相似文献   
2.
We report a dose‐dependent phase evolution in Mo/Si bilayer system upon Ar+ ion beam irradiation and subsequent flash annealing at 800 °C for 60 s. Micro‐structural characterization with Grazing Incidence X‐ray Diffraction and Raman scattering reveals a dose‐dependent nucleation of polymorphic phases occurring at the amorphized interface region. The ion beam mixing process has been investigated by Secondary Ion Mass Spectrometry and Rutherford Backscattering Spectrometry. While low ion doses favour nucleation of only metastable MoSi2 phase, co‐existence of polymorphic phases are observed at high ion doses. The persistence of such polymorphic phases even after a high‐temperature anneal for high dose implanted specimen is indicative of phase retardation. The phase retardation of h‐MoSi2 to t‐MoSi2 is accounted in terms of nucleation and growth process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
The loss of local dielectric integrity in ultrathin Al2O3 films grown by atomic layer deposition is investigated using conducting atomic force microscopy. IV spectra acquired at different regions of the samples by constant and ramping voltage stress are analyzed for their pre- and post-breakdown signatures. Based on these observations, the thickness dependent dielectric reliability and failure mechanism are discussed. Our results show that remarkable enhancement in breakdown electric field as high as 130 MV/cm is observed for ultrathin films of thickness less than 1 nm.  相似文献   
4.
A rigid NSN-donor proligand, 4,5-bis(2,6-diisopropylanilino)-2,7-di-tert-butyl-9,9-dimethylthioxanthene (H(2)[TXA(2)], 1) was prepared by palladium-catalyzed coupling of 2,6-diisopropylaniline with 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylthioxanthene. Deprotonation of 1 using (n)BuLi provided Li(2)(DME)(2)[TXA(2)] (2), and subsequent reaction with UCl(4) afforded [Li(DME)(3)][(TXA(2))UCl(3)] (4). The analogous NON-donor ligated complex [(XA(2))UCl(3)K(DME)(3)] [3; XA(2) = 4,5-bis(2,6-diisopropylanilino)-2,7-di-tert-butyl-9,9-dimethylxanthene] was prepared by the reaction of K(2)(DME)(x)[XA(2)] with UCl(4). A cyclic voltammogram (CV) of 3 in THF/[NBu(4)][B(C(6)F(5))(4)] at 200 mV s(-1) showed an irreversible reduction to uranium(III) at E(pc) = -2.46 V versus FeCp(2)(0/+1), followed by a product wave at E(1/2) = -1.83 V. Complex 4 also underwent irreversible reduction to uranium(iii) [E(pc) = -2.56 V], resulting in an irreversible product peak at E(pa) = -1.83 V. One-electron reduction of complexes 3 and 4 using K(naphthalenide) under an argon atmosphere in DME yielded 6-coordinate [(XA(2))UCl(DME)] (5) and the thermally unstable 7-coordinate [(TXA(2))U(DME)Cl(2)Li(DME)(2)] (6), respectively. The U-S distances in 4 and 6 are uncommonly short, the C-S-U angles are unusually acute, and the thioxanthene backbone of the TXA(2) ligand is significantly bent. By contrast, the xanthene backbone in XA(2) complexes 3 and 5 is planar. However, κ(3)-coordination and an approximately meridional arrangement of the ancillary ligand donor atoms is maintained in all complexes. DFT and Atoms in Molecules (AIM) calculations were carried out on 3, 4, 5, 6, [(XA(2))UCl(3)](-) (3B), [(TXA(2))UCl(2)(DME)](-) (6B) and [(TXA(2))UCl(DME)] (6C) to probe the extent of covalency in U-SAr(2) bonding relative to U-OAr(2) bonding.  相似文献   
5.
6.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   
7.
In the present work, structural, morphological, dielectrical, and electrochemical properties of LiNixMn(2-x)O4 (where x?=?0, 0.1,0.3, 0.5 mol%) prepared by solution combustion method were reported. X-ray diffraction studies confirmed the formation of cubic spinel structure without any impurity phases. Scanning electron micrographs revealed grains of micrometer range with a spherical like morphology and narrow size distribution. Dielectric parameters such as dielectric constant, dielectric loss, impedance, and electrical modulus were found to depend on temperature, frequency, and dopant concentration. AC conductivity was found to increase with increase in temperature exhibiting negative temperature co-efficient of resistance (NTCR) property in the material. Complex impedance and electrical modulus studies revealed the existence of temperature-dependent electrical relaxation in the material. The Correlated Barrier Hopping (CBH) model of conduction mechanism was confirmed by the decrease in s parameter with increase in temperature. Charge-discharge studies revealed the stabilization of spinel lattice by Ni ions, contributing to better capacity retention.  相似文献   
8.
In this current outlook, we critically review the most vital new outcomes in the field of rechargeable Li, Na and K-ion batteries. We deliberate current discoveries like the progress of electrospinning and their applications in future. Mainly, we discuss freestanding and binder-free electrodes structural and morphological effect when it undergoes long term cycling. Finally, this short review grants the up-to-date advancement on novel processing strategies of various carbon-based electrospun composites as anodes whose performance are similar with or even can beat that of the commercial anode material system.  相似文献   
9.

This paper presents a unique thermal control strategy to improve the ageing of the battery and to maintain the internal temperature of the battery within the optimum limit of 20 °C–40 °C for electric vehicle (EV) applications. The hybrid EV system encompasses photovoltaic (PV) module, high power density device supercapacitor (SC) and high energy density Li-ion battery (LIB) as an energy storage element. The vehicle dynamics encounter frequent voltage fluctuations in the direct current (DC) bus, which ultimately reduces the lifecycle of the battery and also the heat is generated inside the battery when it is connected in parallel to the DC bus. The frequent charging/discharging of LIB is controlled by the unique thermal control strategy of the hybrid EV system. The DC bus voltage is controlled by the SC bi-directional converter (BDC) where, the battery BDC delivers the essential constant current from the main source (PV) to the DC bus. This unique thermal control strategy supports the distribution of power from the PV/LIB/SC hybrid source system to the EV and also improves the battery life cycle. Due to constant charging/discharging of battery the thermal runaway (TR) problem such as leak, smoke, gas venting, rapid disassembly, flames etc., can be eliminated. Decoupling of load power and battery power comprises the growth in the battery lifecycle and to maintain the optimum internal temperature of the LIB by conditional flow of current through hybrid thermal management system (HTMS). To certify the thermal control strategy and to estimate the performance of HTMS, a simulation of a hybrid source system with vehicle dynamics is performed in MATLAB/Simulink. Numerical analysis of the LIB during constant charging/discharging is performed using ANSYS fluent software to validate the temperature effect of HTMS.

  相似文献   
10.
Deprotonation of the nitrogen atoms of the two pyrrole rings of 1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene with KH followed by further reaction with either VCl 3(THF) 3 or with VCl 2(TMEDA) 2 respectively gave the paramagnetic complexes [1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene]VCl(DME) ( 1) and [1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene]V(THF) 3 ( 2). Further reduction with the appropriate amount of KH afforded diamagnetic dinuclear [1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene]V} 2] ( 3). In complex 3, the bridging interaction between the two metal centers is realized via the ligand central benzene ring. Density functional theory calculations have elucidated the nature of the electronic interaction between the two metals with the bridging pi-system thus accounting for its visible structural distortion. Calculations also pointed out the presence of only a weak V-V bond in spite of the short V-V distance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号