首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   40篇
  国内免费   3篇
化学   907篇
晶体学   8篇
力学   6篇
综合类   1篇
数学   62篇
物理学   205篇
  2023年   10篇
  2022年   9篇
  2021年   18篇
  2020年   14篇
  2019年   20篇
  2018年   12篇
  2017年   7篇
  2016年   19篇
  2015年   25篇
  2014年   31篇
  2013年   50篇
  2012年   63篇
  2011年   74篇
  2010年   44篇
  2009年   41篇
  2008年   70篇
  2007年   79篇
  2006年   105篇
  2005年   75篇
  2004年   61篇
  2003年   49篇
  2002年   49篇
  2001年   25篇
  2000年   18篇
  1999年   10篇
  1998年   11篇
  1997年   17篇
  1996年   20篇
  1995年   9篇
  1994年   7篇
  1993年   16篇
  1992年   10篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1984年   15篇
  1983年   3篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
排序方式: 共有1189条查询结果,搜索用时 15 毫秒
1.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   
2.
Treatment of 1,3-dihydroxyacetone and acrolein with aqueous KOH gave a tetrahydrofuran derivative, 1,4-dihydroxy-3,7-dioxabicyclo[3.3.0]octane, in 80% yield. Similarly, 6-alkyl substituted 1,4-dihydroxy-3,7-dioxabicyclo[3.3.0]octanes were obtained by reaction of 1,3-dihydroxyacetone with various α,β-unsaturated aldehydes. In the cases of long chain alkenals, the reaction was effectively accelerated in the presence of organic co-solvent. On the other hand, the corresponding tricyclic products were synthesized by reaction of 1,3-dihydroxyacetone with cyclic enones, such as 2-cyclopentenone and 2-cyclohexenone. This method was successfully applied to the reaction of a tetrulose in the absence of any protecting groups.  相似文献   
3.
Facilitated SO4(2-) transfers by hydrogen bond-forming ionophores are investigated across the nitrobenzene (NB)-water interface by using polarography with a dropping electrolyte electrode. Bis-thiourea 1, alpha,alpha'-bis(N'-p-nitrophenylthioureylene)-m-xylene, is found to significantly facilitate the transfer of the highly hydrophilic SO4(2-) whereas its counterpart, N-(p-nitrophenyl)-N'-propylthiourea (ionophore 2), cannot. In contrast to the predominant formation of a 1:1 complex with SO4(2-) in the bulk NB phase, the SO4(2-) transfer assisted by 1 is indeed based on the formation of a 1:2 complex between SO4(2-) and ionophore, even under the condition of [SO4(2-)]aq > [1]org. Such an exclusive formation of the 1:2 (SO4(2-) to ionophore) complex at the NB-water interface is not observed with structurally similar bis-thiourea 3, alpha,alpha'-bis(N'-phenylthioureylene)-m-xylene, where p-nitrophenyl moietes of bis-thiourea 1 are simply replaced by phenyl groups. The facilitated transfer of SO4(2-) with bis-thiourea 1 is further compared to that of HPO4(2-) and H2PO4- across the NB-water interface, which was previously shown to be assisted by 1 through the formation of the 1:1 and 2:1 (anion to ionophore) complexes, respectively. On the basis of these examinations, unique binding behaviors of hydrogen bond-forming ionophores at the NB-water interface are discussed, with a view towards development of ionophore-based anion-selective chemical sensors.  相似文献   
4.
5.
We studied the structural, electrical, and mechanical properties of an InAs thin film grown on GaAs (1 1 1)A substrates by molecular beam epitaxy. In contrast to conventionally used (0 0 1) surfaces, where Stranski–Krastanov growth dominates the highly mismatched heteroepitaxy, layer-by-layer growth of InAs can be established. One of the largest advantages of this unique heteroepitaxial system is that it provides a two-dimensional electron gas system in the near-surface region without the problem of electron depletion. We review the fundamental properties and applications of this unique heteroepitaxial system.  相似文献   
6.
7.
A non-halogen highly flame-retardant 0.9mm optical fiber and 2.0mm simplex optical cord, which are harmonized with the ecosystem, have been developed. The characteristics of them are presented in this paper.  相似文献   
8.
Monodisperse bimetallic Pd–Co nanoparticles were prepared via a thermal decomposition of cobalt carbonyl using palladium seeds at the Pd/Co molar ratios 0.5%, 1%, and 5%. The heterogeneously nucleated nanoparticles without any size-selective precipitation are sufficiently uniform to self-assemble into ordered arrays. The as-synthesized nanoparticles are each a single crystal with a complex cubic structure called ε-Co. The presence of Pd seeds seems to improve the stability of Co nanoparticles against oxidation based on the results from time-dependent magnetization measurement.  相似文献   
9.
We investigate the quantum Hall effect (QHE) in the InAs/GaSb hybridized electron–hole system grown on a conductive InAs substrate which act as a back-gate. In these samples, the electron density is constant and the hole density is controlled by the gate-voltage. Under a magnetic field perpendicular to the sample plane, the QHE appears along integer Landau-level (LL) filling factors of the net-carriers, where the net-carrier density is the difference between the electron and hole densities. In addition, longitudinal resistance maxima corresponding to the crossing of the extended states of the original electron and hole LLs make the QHE regions along integer-νnet discontinuous. Under tilted magnetic fields, these Rxx maxima disappear in the high magnetic field region. The results show that the in-plane magnetic field component enhances the electron–hole hybridization and the formation of minigaps at LL crossings.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号