首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   35篇
  国内免费   3篇
化学   438篇
晶体学   9篇
力学   2篇
数学   10篇
物理学   105篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   16篇
  2014年   15篇
  2013年   26篇
  2012年   21篇
  2011年   42篇
  2010年   23篇
  2009年   15篇
  2008年   38篇
  2007年   38篇
  2006年   35篇
  2005年   32篇
  2004年   33篇
  2003年   25篇
  2002年   27篇
  2001年   14篇
  2000年   16篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1977年   8篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
  1967年   3篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
1.
Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveguide with internal loss less than 0.5dB/cm in the wavelength region from 1.2 to 1.6 mm, by translating a silica glass perpendicular to the axis of the focused femtosecond laser beam; 2) nano-scale valence state manipulation of active ions inside transparent materials; 3) space-selective precipitation and control of metal nanoparticles inside transparent materials; The mechanisms and applications of the femtosecond laser induced phenomena were also discussed.  相似文献   
2.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   
3.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
4.
The electrostatic calculation for molecules using approximated variational wave functions leads to well known difficulties connected with the application of the Hellmann-Feynman (H? F) theorem. This is due to the basis set inadequacies in the underlying calculations. This defect can easily be remedied by floating functions, whose centers are optimized in space. We can keep almost everything of the traditional wave function with a nuclear-fixed basis set, but we apply single floating to ensure the H? F theorem. Then, one can obtain a wave function obeying the H? F theorem. This provides a great conceptual simplification and may lead to practical advantages. The single floating scheme, which retains one expansion center per nucleus, is successfully applied to a series of small molecules using SCF and CASSCF wave functions with sufficiently polarized basis sets.  相似文献   
5.
The long-range correction (LC) scheme for the exchange functional of density-functional theory (DFT) was combined with the coupled-perturbed Kohn-Sham (CPKS) method to calculate nonlinear optical response properties. By using this LC-CPKS method, we calculated the hyperpolarizabilities of typical molecules and the dipole moments, polarizabilities, and hyperpolarizabilities of push-pull pi-conjugated systems: p-nitroaniline, 4-amino-4'-nitrostilbene, and alpha,omega-nitroaminopolyenes. It was found that the LC scheme clearly improved the calculation of these optical properties for all of these systems, which have been significantly overestimated by conventional DFTs. We therefore concluded that the long-range exchange interaction played an important role in calculating the optical properties using the DFT formalism.  相似文献   
6.
This paper offers the first series of state-of-the-art quantum chemical calculations (CASSCF, CASPT2, MS-CASPT2) and analytical models for the well-known problem of quasi-general ferromagnetic coupling in copper-gadolinium complexes. A system chosen from the chemical report of Costes et al. was taken as prototype. At the CASSCF level, calculated results for the experimental structure reproduced the magnetic coupling constant well (J(calcd)( )()= +7.67 cm(-)(1) vs J(exp)( )()= +7.0 cm(-)(1)). For more insight, the study molecule was further idealized by geometry optimization to C(2)(v)() symmetry. Systematic ab initio computation experiments were designed and performed. Owing to specific problems related to the non-aufbau ground configuration of the [CuL-Gd] complexes, the calculations were conducted in a nonstandard manner. We found that the qualitative mechanism of Kahn, assigned to the electron jump from 3d of Cu(II) to 5d shell of Gd(III), can be presented effectively as the cause of the phenomenon, if CASPT2 MOs are taken as magnetic orbitals. We showed that the ferromagnetic coupling is also matched and magnified by spin polarization effects over the ligand, in line with the early assumption of Gatteschi. To be distinguished from the initial hypothesis of Gatteschi, which assumed the role of 6s AO of Gd(III), we found that one 5d-type AO is actually involved in the polarization scheme. In fact, the Gatteschi and Kahn mechanisms are not mutually contradictory, but are even interconvertible with appropriate changes of the magnetic orbitals. Within C(2)(v)() symmetry of complexes, the ferromagnetic coupling can be qualitatively regarded as the preponderant influence of interaction channels exhibiting orbital orthogonality (four 3d-4f contacts) over the nonorthogonal ones (two 3d-4f contacts). The effective preponderance from ferromagnetic pathways is supported by CASPT2 results. One may explain the generality of Cu(II)-Gd(III) ferromagnetic coupling as being correlated with the large occurrence of approximate pseudo-C(2)(v)() geometry of complexes. The observed orbital regularity is lost in lower symmetries. Thus, the antiferromagnetic exceptions occur when the molecular asymmetry is advanced (e.g., owing to strong chemical nonequivalence of the donor atoms).  相似文献   
7.
8.
We apply the long-range correction (LC) scheme for exchange functionals of density functional theory to time-dependent density functional theory (TDDFT) and examine its efficiency in dealing with the serious problems of TDDFT, i.e., the underestimations of Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies. By calculating vertical excitation energies of typical molecules, it was found that LC-TDDFT gives accurate excitation energies, within an error of 0.5 eV, and reasonable oscillator strengths, while TDDFT employing a pure functional provides 1.5 eV lower excitation energies and two orders of magnitude lower oscillator strengths for the Rydberg excitations. It was also found that LC-TDDFT clearly reproduces the correct asymptotic behavior of the charge-transfer excitation energy of ethylene-tetrafluoroethylene dimer for the long intramolecular distance, unlike a conventional far-nucleus asymptotic correction scheme. It is, therefore, presumed that poor TDDFT results for pure functionals may be due to their lack of a long-range orbital-orbital interaction.  相似文献   
9.
Double C-C bond cleavage of a cyclopentadienyl ligand proceeded to titanacyclopentadienes when 2 equiv of nitriles were added and the resulting two-carbon unit and three-carbon unit were converted into a benzene derivative and a pyridine derivative, respectively, in one-pot.  相似文献   
10.
Abstract— Ultraweak luminescence generated by sweet potato and nonpathogenic Fusarium oxysporum interactions associated with a defense response was detected by a photoncounting method using ultrahigh-sensitive photodetectors. The time-dependent intensity variation, the spectrum and the two-dimensional imaging of the ultraweak luminescence are indicative of the defense response of the sweet potato to F. oxysporum. The production of ipomeamarone as a phytoalexin means that F. oxysporum induced the defense response in the sweet potato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号