首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2002年   2篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   
2.
AIM:To prepare polylactiv acid microspheres of Erythromycin for Lung targeting.METHEDS:The orthogonal test design was used to optimize the technology of preparation.The character of the microspheres,drug release in vitro,stabiligy and tissue distribution were examined. RESULTS:The Erythromycin polylatic acid microspheres was regular in its morphology.Drug was enveloped in microspheres but not physically mixed with PDLLA.The average particle size was 11.65μm with over 94% of the microspheres being in the range of 5-20μm;The drug loading and the incorporation efficiency were 18% and 60% respectively.The microspheres were stable for three month at 4℃ and room temperature.The in vitro release properties could be expressed by the Higuchi′s equation:y=28.067+3.8515t^1/2(r=0.9834).Comparing with injection,the drug in microspheres was more concentrated in lung tissue.CONLUSION:Erythromycin polylactic acid microspheres showed significant sustained release and lung targeting.  相似文献   
3.
Today, wide variety of adsorbents have been developed for sample pretreatment to concentrate and separate harmful substances. However, only a few solid phase microextraction Arrow adsorbents are commercially available. In this study, we developed a new solid phase microextraction Arrow coating, in which nanosheets layered double hydroxides and poly(vinylpyrrolidone) were utilized as the extraction phase and poly(vinyl chloride) as the adhesive. This new coating entailed higher extraction capacity for several volatile organic compounds (allyl methyl sulfide, methyl propyl sulfide, 3‐pentanone, 2‐butanone, and methyl isobutyl ketone) compared to the commercial Carboxen 1000/polydimethylsiloxane coating. Fabrication parameters for the coating were optimized and extraction and desorption conditions were investigated. The validation of the new solid phase microextraction Arrow coating was accomplished using water sample spiked with volatile organic compounds. Under the optimal conditions, the limits of quantification for the five volatile organic compounds by the new solid phase microextraction Arrow coating and developed gas chromatography with mass spectrometry method were in the range of 0.2‐4.6 ng/mL. The proposed method was briefly applied for enrichment of volatile organic compounds in sludge.  相似文献   
4.
Pan  Daodong  Xun  Mingyue  Lan  Hangzhen  Li  Jianlin  Wu  Zhen  Guo  Yuxing 《Analytical and bioanalytical chemistry》2019,411(29):7737-7745

A newly developed molecularly imprinted photonic polymer (MIPP) film, which was prepared by colloidal crystal templating and surface molecular imprinting, was used for selective capture of S-layer protein (SLP) from a complex Lactobacillus acidophilus sample. The colloidal crystal templates were formed by a dipping process followed by chemical binding of the imprinted template SLP molecules. A sandwich structure consisting of two glass slides was formed after the SLP–silica layer had been covered with a poly(methyl methacrylate) glass slide. After polymerization of the SLP–silica layer with the preprepared polymerization solution, hydrofluoric acid and acetic phosphate buffer solutions removed the silica particles and SLP molecules, respectively. The MIPP film obtained exhibited a three-dimensional, highly ordered and interconnected macroporous structure (pore size greater than 200 nm), which is specifically accessible to SLP molecules. The adsorbed SLP molecules were simply and straightforwardly detected by a fiber-optic spectrometer. The redshift of the Bragg diffraction peak of the MIPP film was linearly related to the number of SLP molecules that had been harvested in the film. The detection limit of the SLP–MMIP–fiber-optic spectrometer method for SLP was 1 ng mL-1. The MIPP sensor was successfully applied to detect SLP molecules in a crudely extracted Lactobacillus acidophilus sample. Our results prove the applicability of the SLP–MIPP film for fast and real-time measurement of SLP.

Graphical abstract

  相似文献   
5.
Cathodic electrodeposition (CED) has received great attention in metal-organic frameworks (MOFs) synthesis due to its distinguished properties including simplicity, controllability, mild synthesis conditions, and product continuously. Here, we report the fabrication of thin (Et3NH)2Zn3(BDC)4 (E-MOF-5) film coated solid phase microextraction (SPME) fiber by a one-step in situ cathodic electrodeposition strategy. Several etched stainless steel fibers were placed in parallel in order to achieve simultaneously electrochemical polymerization. The influence of different polymerization parameters Et3NHCl concentration and polymerization time were evaluated. The proposed method requires only 20 min for the preparation of E-MOF-5 coating. The optimum coating showed excellent thermal stability and mechanical durability with a long lifetime of more than 120 repetitions SPME operations, and also exhibited higher extraction selectivity and capacity to four estrogens than commonly-used commercial PDMS coating. The limits of detection for the estrogens were 0.17–0.56 ng mL−1. Fiber-to-fiber reproducibility (n = 8) was in the respective ranges of 3.5%–6.1% relative standard deviation (RSD) for four estrogens for triplicate measurements at 200 ng mL−1. Finally, the (E-MOF-5) coated fiber was evaluated for ethinylestradiol (EE2), bisphenol A (BPA), diethylstilbestrol (DES), and hexestrol (HEX) extraction in the spiked milk samples. The extraction performance of this new coating was satisfied enough for repeatable use without obvious decline.  相似文献   
6.
1. INTRODUCTION Polylatic acid (PLA) is a unique biodegradable synthetic material with wonderful biological compatibility and non-toxicity. dl-polylactic acid (PDLLA) is amorphous and there is no residual microcrystalline after degradation[1]. Therefore,…  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号