首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   6篇
化学   174篇
晶体学   2篇
力学   1篇
数学   11篇
物理学   40篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   1篇
  2013年   8篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2009年   1篇
  2008年   8篇
  2007年   15篇
  2006年   15篇
  2005年   15篇
  2004年   15篇
  2003年   12篇
  2002年   16篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1969年   1篇
  1962年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
A new tripodal ligand, tris[2-(((2-thiazolyl)methylidene)amino)ethyl]amine (Tatren), has been synthesized and characterized by NMR, IR, and UV-visible absorbance spectroscopy and elemental analysis. Tatren forms stable complexes with transition metal ions (Zn(2+), 1; Mn(2+), 2; Co(2+), 3) and the alkaline earth metal ions (Ca(2+), 4; Mg(2+), 5). Single-crystal X-ray structures of 1, 2, and 5 revealed six-coordinate chelate complexes with formula [M(Tatren)](ClO(4))(2) in which the metal centers are coordinated by three thiazolyl N atoms and three acyclic imine N atoms. Crystals of 1, 2, and 5 are monoclinic, P2(1)/c space group. Crystals of 4 are triclinic, P space group. The Ca(2+) complex is eight-coordinate with all N atoms of Tatren and one water molecule coordinated to the metal ion. Spectrophotometric titrations show that formation constants for the chelates of metal ions are >1 in methanol. Free Tatren inhibits the catalytic domain of matrix metalloproteinase-13 (MMP-13, collagenase-3) with K(i) = 3.5 +/- 0.6 microM. Molecular mechanics-based docking calculations suggest that one leg of Tatren coordinates to the catalytic Zn(2+) in MMPs-2, -9, and -13 with significant hydrogen bonding to backbone amide groups. High-level DFT calculations suggest that, in the absence of nonbonded interactions between Tatren and the enzyme, the most stable first coordination sphere of the catalytic Zn(2+) is achieved with three imidazolyl groups from His residues and two imine N atoms from one leg of Tatren. While complexes (1-3) do not inhibit MMP-13 to a significant extent, 4 does (K(i) = 30 +/- 10 microM). Hence, this study shows that tripodal chelating ligands of this class and their Ca(2+) complexes have potential as active-site inhibitors for MMPs.  相似文献   
5.
6.
7.
8.
To understand the coordination chemistry of zinc-binding groups (ZBGs) with catalytic zinc centers in matrix metalloproteinases (MMPs) and disintegrin metalloproteases (ADAMs), we have undertaken a model compound study centered around tris(3,5-methylphenypyrazolyl)hydroboratozinc(II) hydroxide and aqua complexes ([Tp(Ph,Me)ZnOH] and [Tp(Ph,Me)Zn(OH2)]+, respectively, wherein (Tp(Ph,Me))- = hydrotris(3,5-methylphenylpyrazolyl)borate) and the products of their reactions with a class of chelating Schiff's base ligands. The results show that the protic ligands, HL (HL = N-propyl-1-(5-methyl-2-imidazolyl)methanimine (5-Me-4-ImHPr), N-propyl-1-(4-imidazolyl)methanimine (4-ImHPr), and N-propyl-1-(2-imidazolyl)methanimine (2-ImHPr)), react with [Tp(Ph,Me)ZnOH] and give products with the general formula [Tp(Ph,Me)ZnL], whereas reactions with neutral aprotic ligands, L' (L' = N-propyl-1-(1-methyl-2-imidazolyl)methanimine (1-Me-2-ImPr) and N-propyl-1-(2-thiazolyl)methanimine (2-TaPr)), yield the corresponding [Tp(Ph,Me)ZnL]+ complexes. Although the phenol group of N-propyl-1-(2-hydroxyphenyl)methanimine (2-HOPhPr) is protic, this ligand forms a cationic four-coordinate complex containing an intraligand hydrogen bond. The solid-state structures of these complexes were determined by single-crystal X-ray diffraction, and the results showed that the protic ligands form five-membered chelates of the Zn2+ ion. All ligands displace the aqua ligand in [Tp(Ph,Me)Zn(OH2)]+ to yield complexes having 1H NMR spectra consistent with the formation of five membered chelates. The 1H resonance frequencies of the chelating ligands typically shift upfield upon coordination to the zinc center, due to ring current effects from the pendant phenyl groups of the (Tp(Ph,Me))- ligand. Thus, the 1H NMR spectra provide a convenient and sensitive means of tracking the solution reactions by titration. The resulting series of spectra showed that the stabilities of the chelates in solution depend on the propensity of the ligands to deprotonate upon chelation of the zinc center. The behaviors of these bidentate ZBGs provide insight into the structural and electronic factors that contribute to the stabilities of inhibited MMPs and ADAMs and suggest that the proton acidity of the coordinated ZBG may be a crucial criterion for inhibitor design.  相似文献   
9.
A series of new platinum(II) and platinum(IV) complexes of the type [PtII(HMI)2X] (where HMI=hexamethyleneimine, X=dichloro, sulfato, 1,1-cyclobutanedicarboxylato [CBDCA], oxalato, methylmalonato, or tatronato) and [PtIV(HMI)2Y2Cl2] (where Y=hydroxo, acetato, or chloro) were synthesized and characterized by infrared (IR) spectroscopy, 13C and 195Pt nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Among the complexes synthesized, [PtII(hexamethyleneimine)2(1,1-cyclobutanedicarboxylato)]·H2O was examined by single-crystal X-ray diffraction. The slightly distorted square planar coordination environment of the platinum metal includes the amino group of the hexamethyleneimine (HMI) molecule and the oxygen atoms of the carboxylato ligand. The cyclobutanedicarboxylic acid (CBDCA) molecule adopts six-member chelating rings with platinum. Hydrogen bonding plays an important part in holding the crystal lattice together.  相似文献   
10.
The microwave spectra of six isotopomers of HCl-N(2)O have been obtained in the 7-19 GHz region with a pulsed molecular beam, Fourier transform microwave spectrometer. The nuclear quadrupole hyperfine structure due to all quadrupolar nuclei is resolved and the spectra are analyzed using the Watson S-reduced Hamiltonian with the inclusion of nuclear quadrupole coupling interactions. The spectroscopic constants determined include rotational constants, quartic and sextic centrifugal distortion constants, and nuclear quadrupole coupling constants for each quadrupolar nucleus. Due to correlations of the structural parameters, the effective structure of the complex cannot be obtained by fitting to the spectroscopic constants of the six isotopomers. Instead, the parameters for each isotopomer are calculated from the A and C rotational constants and the chlorine nuclear quadrupole coupling constant along the a-axis, chi(aa). There are two possible structures; the one in which hydrogen of HCl interacts with the more electronegative oxygen of N(2)O is taken to represent the complex. The two subunits are approximately slipped parallel. For H (35)Cl-(14)N(2)O, the distance between the central nitrogen and chlorine is 3.5153 A and the N(2)O and HCl subunits form angles of 72.30 degrees and 119.44 degrees with this N-Cl axis, respectively. The chlorine and oxygen atoms occupy the opposite, obtuse vertices of the quadrilateral formed by O, central N, Cl, and H. Nuclear quadrupole coupling constants show that while the electric field gradient of the HCl subunit remains essentially unchanged upon complexation, there is electronic rearrangement about the two nitrogen nuclei in N(2)O.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号