首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
化学   6篇
数学   1篇
物理学   8篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2000年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
High pressure behavior of zinc cyanide (Zn(CN)2) has been investigated with the help of synchrotron-based X-ray diffraction measurements. Our studies reveal that under pressure this compound undergoes phase transformations and the structures of the new phases depend on whether the pressure is hydrostatic or not. Under hydrostatic conditions, Zn(CN)2 transforms from cubic to orthorhombic to cubic-II to amorphous phases. In contrast, the non-hydrostatic pressure conditions drive the ambient cubic phase to a partially disordered crystalline phase, which eventually evolves to a substantially disordered phase. The final disordered phase in the latter case is distinct from the amorphous phase observed under the hydrostatic pressures.  相似文献   
2.
3.
4.
We have carried out first principles structural relaxation calculations on the hydrous magnesium silicate phase A (Mg7Si2O8(OH)6) under high pressures. Our results show that phase A does not undergo any phase transition up to ~45 GPa. We find that non-bonded H---H distance reaches a limiting value of 1.85 Å at about 45 GPa. The hydrogen bond bending mechanism for countering the H---H repulsive strain that was proposed by Hofmeister et al. for phase B is not the only one operating in phase A. It also has contributions based on the reduction of one of the O–H bond distances and opening up of the H---O---H angle with compression. The contraction of the O–H distance with pressure, perhaps the first one by density function theory calculations, will have implications for the spectroscopic measurements.  相似文献   
5.
The protein crystallography beamline (PX‐BL21), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX‐BL21 has a working energy range of 5–20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double‐crystal monochromator [Si(111) and Si(220)] and a pair of rhodium‐coated X‐ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single‐axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on‐site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.  相似文献   
6.
An innovative scheme to carry out continuous‐scan X‐ray absorption spectroscopy (XAS) measurements similar to quick‐EXAFS mode at the Energy‐Scanning EXAFS beamline BL‐09 at INDUS‐2 synchrotron source (Indore, India), which is generally operated in step‐by‐step scanning mode, is presented. The continuous XAS mode has been implemented by adopting a continuous‐scan scheme of the double‐crystal monochromator and on‐the‐fly measurement of incident and transmitted intensities. This enabled a high signal‐to‐noise ratio to be maintained and the acquisition time was reduced to a few seconds from tens of minutes or hours. The quality of the spectra (signal‐to‐noise level, resolution and energy calibration) was checked by measuring and analysing XAS spectra of standard metal foils. To demonstrate the energy range covered in a single scan, a continuous‐mode XAS spectrum of copper nickel alloy covering both Cu and Ni K‐edges was recorded. The implementation of continuous‐scan XAS mode at BL‐09 would expand the use of this beamline in in situ time‐resolved XAS studies of various important systems of current technological importance. The feasibility of employing this mode of measurement for time‐resolved probing of reaction kinetics has been demonstrated by in situ XAS measurement on the growth of Ag nanoparticles from a solution phase.  相似文献   
7.
To elucidate the cause of destruction of ferroelectricity with pressure in triglycine sulfate and triglycine selenate, we have investigated these compounds with the help of Raman measurements as well as first principles total energy and structural optimization calculations. Our results show that, beyond the critical pressures, the loss of ferroelectricity in these compounds is due to the conformational change in one of the three glycine ions of these crystals. Our studies suggest that pressure induced phase transition might be of displacive nature unlike the temperature induced ferroelectric phase transition in these crystals which is known to be of order-disorder type.  相似文献   
8.
The effect of pressure on the strength of H2 covalent bond in the molecular solid SiH4(H2)2 has been investigated using quantum molecular dynamics simulations and charge density analysis. Our calculations show, in agreement with the implications of the experimental results, that substantial elongation of H2 bond can be achieved at low pressures, with the onset of rapid changes close to 40 GPa. Model calculations show redistribution of charge from bonding to antibonding states to be responsible for the behavior. Our computed Raman spectra confirm the dynamic exchange of hydrogen atoms speculated to be operative in SiH4–D2 mixture by experiments. This exchange is shown to be a three step process driven by thermal fluctuations.  相似文献   
9.
The present paper reports the results of in situ Raman studies carried out on nano-crystalline CeO2 up to a pressure of 35 GPa at room temperature. The material was characterized at ambient conditions using X-ray diffraction and Raman spectroscopy and was found to have a cubic structure. We observed the Raman peak at ambient at 465 cm?1, which is characteristic of the cubic structure of the material. The sample was pressurized using a diamond anvil cell using ruby fluorescence as the pressure monitor, and the phase evolution was tracked by Raman spectroscopy. With an increase in the applied pressure, the cubic band was seen to steadily shift to higher wavenumbers. However, we observed the appearance of a number of new peaks around a pressure of about 34.7 GPa. CeO2 was found to undergo a phase transition to an orthorhombic α -PbCl2-type structure at this pressure. With the release of the applied pressure, the observed peaks steadily shift to lower wavenumbers. On decompression, the high pressure phase existed down to a total release of pressure.  相似文献   
10.
The phase transformation in nano‐crystalline dysprosium sesquioxide (Dy2O3) under high pressures is investigated using in situ Raman spectroscopy. The material at ambient was found to be cubic in structure using X‐ray diffraction (XRD) and Raman spectroscopy, while atomic force microscope (AFM) showed the nano‐crystalline nature of the material which was further confirmed using XRD. Under ambient conditions the Raman spectrum showed a predominant cubic phase peak at 374 cm−1, identified as Fg mode. With increase in the applied pressure this band steadily shifts to higher wavenumbers. However, around a pressure of about 14.6 GPa, another broad band is seen to be developing around 530 cm−1 which splits into two distinct peaks as the pressure is further increased. In addition, the cubic phase peak also starts losing intensity significantly, and above a pressure of 17.81 GPa this peak almost completely disappears and is replaced by two strong peaks at about 517 and 553 cm−1. These peaks have been identified as occurring due to the development of hexagonal phase at the expense of cubic phase. Further increase in pressure up to about 25.5 GPa does not lead to any new peaks apart from slight shifting of the hexagonal phase peaks to higher wavenumbers. With release of the applied pressure, these peaks shift to lower wavenumbers and lose their doublet nature. However, the starting cubic phase is not recovered at total release but rather ends up in monoclinic structure. The factors contributing to this anomalous phase evolution would be discussed in detail. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号