首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   14篇
  国内免费   1篇
化学   132篇
晶体学   5篇
力学   7篇
数学   3篇
物理学   89篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   3篇
  2012年   12篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   5篇
  2006年   10篇
  2005年   10篇
  2004年   9篇
  2003年   14篇
  2002年   9篇
  2001年   9篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   7篇
  1993年   2篇
  1991年   2篇
  1989年   2篇
  1988年   4篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1968年   2篇
  1931年   3篇
  1929年   2篇
  1928年   2篇
  1898年   1篇
  1862年   1篇
排序方式: 共有236条查询结果,搜索用时 31 毫秒
1.
2.
3.
Atomic structure of InAs quantum dots on GaAs   总被引:1,自引:0,他引:1  
In recent years, the self-assembled growth of semiconductor nanostructures, that show quantum size effects, has been of considerable interest. Laser devices operating with self-assembled InAs quantum dots (QDs) embedded in GaAs have been demonstrated. Here, we report on the InAs/GaAs system and raise the question of how the shape of the QDs changes with the orientation of the GaAs substrate. The growth of the InAs QDs is understood in terms of the Stranski–Krastanow growth mode. For modeling the growth process, the shape and atomic structure of the QDs have to be known. This is a difficult task for such embedded entities.

In our approach, InAs is grown by molecular beam epitaxy on GaAs until self-assembled QDs are formed. At this point the growth is interrupted and atomically resolved scanning tunneling microscopy (STM) images are acquired. We used preparation parameters known from the numerous publications on InAs/GaAs. In order to learn more about the self-assemblage process we studied QD formation on different GaAs(0 0 1), (1 1 3)A, and ( )B substrates. From the atomically resolved STM images we could determine the shape of the QDs. The quantum “dots” are generally rather flat entities better characterized as “lenses”. In order to achieve this flatness, the QDs are terminated by high-index bounding facets on low-index substrates and vice versa. Our results will be summarized in comparison with the existing literature.  相似文献   

4.
The acid-catalyzed condensation chemistry of simple amides and aldehydes provides a highly prolific source of diverse reactants for irreversible follow-up reactions. Amide-aldehyde mixtures have been successfully employed in multicomponent syntheses of N-acyl alpha-amino acids (via palladium-catalyzed amidocarbonylation) and various cyclohexene, cyclohexadiene, and benzene derivatives (via the amide-aldehyde-dienophile (AAD) reaction).  相似文献   
5.
Trimesityliridium(III) (mesityl = 2,4,6-trimethylphenyl) reacts with O(2) to form oxotrimesityliridium(V), (mes)(3)Ir=O, in a reaction that is cleanly second order in iridium. In contrast to initial reports by Wilkinson, there is no evidence for substantial accumulation of an intermediate in this reaction. The oxo complex (mes)(3)Ir=O oxidizes triphenylphosphine to triphenylphosphine oxide in a second-order reaction with DeltaH++ = 10.04 +/- 0.16 kcal/mol and DeltaS++ = -21.6 +/- 0.5 cal/(mol.K) in 1,2-dichloroethane. Triphenylarsine is also oxidized, though over an order of magnitude more slowly. Ir(mes)(3) binds PPh(3) reversibly (K(assoc) = 84 +/- 3 M(-1) in toluene at 20 degrees C) to form an unsymmetrical, sawhorse-shaped four-coordinate complex, whose temperature-dependent NMR spectra reveal a variety of dynamic processes. Oxygen atom transfer from (mes)(3)Ir=O and dioxygen activation by (mes)(3)Ir can be combined to allow catalytic aerobic oxidations of triphenylphosphine at room temperature and atmospheric pressure with overall activity (approximately 60 turnovers/h) comparable to the fastest reported catalysts. A kinetic model that uses the rates measured for dioxygen activation, atom transfer, and phosphine binding describes the observed catalytic behavior well. Oxotrimesityliridium does not react with sulfides, sulfoxides, alcohols, or alkenes, apparently for kinetic reasons.  相似文献   
6.
7.
Ethylene (C2H4) adsorbed on the stoichiometric and oxygen-rich RuO2(110) surfaces, exposing coordinatively unsaturated Ru-cus and O-cus atoms, is investigated by applying high-resolution electron energy-loss spectroscopy and thermal desorption spectroscopy in combination with isotope labeling experiments. On the stoichiometric RuO2(110) surface C2H4 adsorbs and desorbs molecularly. In contrast, on the oxygen-rich RuO2(110) surface ethylene adsorbs molecularly at 85 K and is completely oxidized through interaction with O-cus and O-bridge upon annealing to 500 K. The first couple of reactions are observed at 200 K taking place on Ru-cus: A change from pi- to sigma-bonding, formation of -C=O and -C-O groups, and dehydrogenation giving rise to H2O adsorbed at Ru-cus. Maximum reaction rate is reached for C2H4 chemisorbed at Ru-cus with O-cus neighbors on each side. A model for the first couple of reactions is sketched. For the final combustion, C2H4 reacts both with O-cus and O-bridge. Ethylene oxide is not detected under any circumstance.  相似文献   
8.
Abstract— A novel technique of capacitative coupling of oriented rhodopsin at a polar/apolar interface allows the time resolved investigation of conformational changes following a flash. Electric signals arise as a consequence of changes of the interface potential. A signal occurring within milliseconds behaves like the R2-phase of the "early receptor potential" (= ERP). This response is interpreted as a conformational change of rhodopsin. No correlation of this signal is found to the spectroscopically defined metarhodopsin I-metarhodopsin II transition.
The temperature dependence of the conformational change coincides with the temperature dependence of the latency of the 'a-wave' of the electroretinogram, reported by Arden and Ikeda (1968). It is suggested that the command step of visual excitation is the conformational change and not one of the spectroscopically defined photolysis steps of rhodopsin.
Analysis of slower electrical signals following the fast response is in accordance with the model of a light-induced pore formation.  相似文献   
9.
Catalytic CO oxidation on the RuO(2)(110) surface was studied at 300 K by scanning tunneling microscopy (STM), high-resolution electron-energy-loss spectroscopy (HREELS), and thermal desorption spectroscopy (TDS). Upon repeatedly exposing the surface to several 10 L of CO and O(2) at 300 K, STM shows that unreactive features accumulate with each CO and O(2) titration run. HREELS and TDS show formation of increasing amounts of H(2)O, retarded formation of O-cus atoms and incomplete removal of CO-bridge molecules during O(2) dosing, and a changing ratio of single- and double-bonded CO-bridge molecules. It is concluded that H(2)O (presumably from the residual gas) is accumulating at the Ru-cus sites thus blocking them, so that the dissociative adsorption of oxygen is prevented and the CO oxidation reaction is suppressed. Some 10% CO- bridge remains on the surface even during oxygen exposure. Consistent with this interpretation, deactivation of the surface is suppressed at 350 K, at the onset of H(2)O desorption.  相似文献   
10.
Nitrate radical (NO(3)) reactions with benzene (R-1), toluene (R-2), p-xylene (R-3), p-cresol (R-4) and mesitylene (R-5) have been studied by laser photolysis/long path laser absorption (LP-LPLA) in aqueous solution. Rate constants of k(1)=(4.0+/-0.6). 10(8), k(2)=(1.2+/-0.3). 10(9), k(3)=(1.6+/-0.1). 10(9), k(4)= (8.4+/-2.3). 10(8) and k(5)=(1.3+/-0.3). 10(9) lmol(-1)s(-1) were obtained at T=298 K. In addition, reaction rate coefficients for SO(-)(5)+Fe(2+)-->prod. (R-6) and SO(-)(5)+Mn(2+)-->prod. (R-7) of k(6)=(4.3+/-2.4). 10(7) lmol(-1)s(-1) and k(7)=(4.6+/-1.0). 10(6) lmol(-1)s(-1) (T=298 K, I-->0) have been obtained by the application of laser photolysis/UV-VIS broadband diode array spectroscopy. A new laser photolysis/UV-long path laser absorption experiment has been applied to study the reaction of the Cl(-)(2) radical anion with dissolved sulfur(IV). For the reactions Cl(-)(2)+HSO(-)(3)-->2Cl(-)+H(+)+SO(-)(3) (R-8) and Cl(-)(2)+SO(2-)(3)-->2Cl(-)+SO(-)(3) (R-9) rate coefficients of k(8)=(1.7+/-0.2). 10(8) lmol(-1)s(-1) (T=298 K, I-->0) and of k(9)=(6.2+/-0.3). 10(7) lmol(-1)s(-1) (T=279 K, I-->0) were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号