首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   18篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  1972年   1篇
排序方式: 共有18条查询结果,搜索用时 156 毫秒
1.
The structures, strain energies, and enthalpies of formation of diamantane 1, triamantane 2, isomeric tetramantanes 3-5, T(d)-pentamantane 6, and D(3d)-hexamantane 7, and the structures of their respective radicals, cations, as well as radical cations, were computed at the B3LYP/6-31G* level of theory. For the most symmetrical hydrocarbons, the relative strain (per carbon atom) decreases from the lower to the higher diamondoids. The relative stabilities of isomeric diamondoidyl radicals vary only within small limits, while the stabilities of the diamondoidyl cations increase with cage size and depend strongly on the geometric position of the charge. Positive charge located close to the geometrical center of the molecule is stabilized by 2-5 kcal mol(-1). In contrast, diamondoid radical cations preferentially form highly delocalized structures with elongated peripheral C-H bonds. The effective spin/charge delocalization lowers the ionization potentials of diamondoids significantly (down to 176.9 kcal mol(-1) for 7). The reactivity of 1 was extensively studied experimentally. Whereas reactions with carbon-centered radicals (Hal)(3)C(*) (Hal=halogen) lead to mixtures of all possible tertiary and secondary halodiamantanes, uncharged electrophiles (dimethyldioxirane, m-chloroperbenzoic acid, and CrO(2)Cl(2)) give much higher tertiary versus secondary selectivities. Medial bridgehead substitution dominates in the reactions with strong electrophiles (Br(2), 100 % HNO(3)), whereas with strong single-electron transfer (SET) acceptors (photoexcited 1,2,4,5-tetracyanobenzene) apical C(4)-H bridgehead substitution is preferred. For diamondoids that form well-defined radical cations (such as 1 and 4-7), exceptionally high selectivities are expected upon oxidation with outer-sphere SET reagents.  相似文献   
2.
3.
The structures of σ-radical cations formed by ionization of adamantane, twistane, noradamantane, cubane, 2,4-dehydroadamantane, and protoadamantane were optimized at the B3LYP, B3LYP-D, M06-2X, B3PW91, and MP2 levels of theory using 6-31G(d), 6-311+G(d,p), 6-311+G(3df,2p), cc-PVDZ, and cc-PVTZ basis sets. On the whole, single-configuration approximations consistently describe the structure and transformations of the examined σ-radical cations. The best correlations (r = 0.97–0.98) between the calculated adiabatic ionization potentials and experimental oxidation (anodic) potentials of hydrocarbons were obtained in terms of B3PW91 approximation.  相似文献   
4.
5.
The first highly selective C-H chlorination, bromination, and iodination of cubane (1) utilizing polyhalomethanes as halogen sources under phase-transfer (PT) conditions is described. Isomeric dihalocubanes with all possible combinations of chlorine, bromine, and iodine in ortho, meta, and para positions were also prepared by this method; m-dihalo products form preferentially. Ab initio and density functional theory (DFT) computations were used to rationalize the pronounced differences in the reactions of 1 with halogen (Hal(*)) vs carbon-centered trihalomethyl (Hal(3)C(*)) radicals (Hal = Cl, Br). For Hal(3)C radicals the C-H abstraction pathway is less unfavorable (DeltaG(double dagger)(298) = 21.6 kcal/mol for Cl(3)C(*) and 19.4 kcal/mol for Br(3)C(*) at B3LYP/6-311+G//B3LYP/6-31G) than the fragmentation of the cubane skeleton via S(H)2-attack on one of the carbon atoms of 1 (DeltaG(double dagger)(298) = 33.8 and 35.1 kcal/mol, respectively). In stark contrast, the reaction of 1 with halogen atoms preferentially follows the fragmentation pathway (DeltaG(double dagger)(298) = 2.1 and 7.5 kcal/mol) and C-H abstraction is more unfavorable (DeltaG(double dagger)(298) = 4.6 and 12.0 kcal/mol). Our computational results nicely agree with the behavior of 1 under PT halogenation conditions (where Hal(3)C(*) is involved in the activation step) and under free-radical photohalogenation with Hal(2) (Della, E. W., et al. J. Am. Chem. Soc. 1992, 114, 10730). The incorporation of a second halogen atom preferentially in the meta position of halocubanes demonstrates the control of the regioselectivity by molecular orbital symmetry.  相似文献   
6.
The mechanisms of activation of a C—H bond by chromium-oxo reagents in the reactions of methane, isobutane, adamantane, and protoadamantane with CrO2(OH)2 were investigated by the BH&HLYP quantum-chemical method in the 6-31G* and 6-311G** (for Cr) basis sets. It was shown that the transition states have clearly defined biradical character and significant transfer of charge from the hydrocarbon to the electrophile.  相似文献   
7.
On the basis of the data from experiments and from modern quantum-chemical calculations using framework hydrocarbons (adamantane, diamondoids, etc.) as models it was demonstrated that the mechanisms of activation of saturated hydrocarbons by various electron-deficient reagents (radicals, charged and neutral electrophiles) are universal.  相似文献   
8.
The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 ? in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces.  相似文献   
9.
The rearrangement of the cubane radical cation (1*+) was examined both experimentally (anodic as well as (photo)chemical oxidation of cubane 1 in acetonitrile) and computationally at coupled cluster, DFT, and MP2 [BCCD(T)/cc-pVDZ//B3LYP/6-31G* ZPVE as well as BCCD(T)/cc-pVDZ//MP2/6-31G* + ZPVE] levels of theory. The interconversion of the twelve C2v degenerate structures of 1*+ is associated with a sizable activation energy of 1.6 kcalmol(-1). The barriers for the isomerization of 1*- to the cuneane radical cation (2*+) and for the C-C bond fragmentation to the secocubane-4,7-diyl radical cation (10*+) are virtually identical (deltaH0++ = 7.8 and 7.9 kcalmol(-1), respectively). The low-barrier rearrangement of 10*+ to the more stable syn-tricyclooctadiene radical cation 3*+ favors the fragmentation pathway that terminates with the cyclooctatetraene radical cation 6*+. Experimental single-electron transfer (SET) oxidation of cubane in acetonitrile with photoexcited 1,2,4,5-tetracyanobenzene, in combination with back electron transfer to the transient radical cation, also shows that 1*+ preferentially follows a multistep rearrangement to 6*+ through 10*+ and 3*+ rather than through 2*+. This was confirmed by the oxidation of syn-tricyclooctadiene (3), which, like 1, also forms 6 in the SET oxidation/rearrangement/electron-recapture process. In contrast, cuneane (2) is oxidized exclusively to semibullvalene (9) under analogous conditions. The rearrangement of 1*+ to 6*+ via 3*+, which was recently observed spectroscopically upon ionization in a hydrocarbon glass matrix, is also favored in solution.  相似文献   
10.
A study was carried out on the mechanisms for the halogenation of the C-H bonds in systems containing N-hydroxyphthalimide, oxone, and CHal4 or N-hydroxyphthalimide and t-BuOCl. These reactions proceed with the participation of the phthalimido-N-oxyl (PINO) radical, which may serve either as an initiator or reagent. A DFT (density functional theory) model showed that the PINO radical may be generated efficiently in the presence of t-BuOCl as the initiator. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 1, pp. 46–51, January–February, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号