首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2004年   1篇
  2001年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Formation constants of ternary complexes of CuII with (S)-amino-acid amides ((S)-phenylalaninamide, (S)-prolinamide, and (S)-tryptophanamide) and (R)- or (S)-histidine and (R)- or (S)-tyrosine were determined potentiometrically in aqueous solution. Significant stereoselectivity was presented by all three amides towards histidine, the diastereoisomeric complexes with ‘heterochiral’ ligands being more stable than those with ‘homochiral’ ligands (see Table 3). The stereoselectivity observed with (S)-phenylalaninamide and (S)-tryptophanamide may be explained on the basis of hydrophobic stacking interactions between 1H-imidazole and the aromatic side chain, favoured by the terdentate behaviour of histidine (see Fig.2), whereas repulsive effects seem to be prevalent with (S)-prolinamide. Only (S)-prolinamide and (S)-phenylalaninamide show appreciable stereoselectivity with tyrosine, which is bidentate, probably on account of repulsive interactions. The present results on the stability of ternary complexes in solution allow to draw some conclusions on the mechanism of chiral discrimination performed by CuII complexes of (S)-amino-acid amides added to the mobile phase in HPLC (reversed phase).  相似文献   
2.
Formation constants of ternary complexes of CuII with (S)-amino-acid amides (phenylalaninamide, prolinamide, and tryptophanamide) and (R)- or (S)-amino acids (valine, phenylalanine, proline, and tryptophan) were determined potentiometrically at 25° and I = 0.1M (KC1). Significant stereoselectivity was found for the systems (S)-tryptophanamide/proline, (S)-prolinamide/tryptophan, and (S)-phenylalaninamide/proline, the diastereoisomeric complexes with ‘homochiral’ (SS) being more stable than with ‘heterochiral’ (SR) ligands. The stereoselectivity observed may be explained on the basis of repulsive interactions between the ligand side-chain residues. The present data on the stability of mixed complexes in solution allow to draw some conclusions on the mechanism of chiral discrimination of amino acids in HPLC (reversed-phase) using CuII complexes of (S)-amino-acid amides as selectors for ligand-exchange chromatography (LEC).  相似文献   
3.
In this paper we report a study on the mechanism of the enantiomeric separation of unmodified D,L-amino acids in RP-HPLC by copper(II) complexes of two tetradentate diaminodiamido ligands, (S,S)-N,N'-bis(phenylalanyl)ethanediamine (PheNN-2) and (S,S)-N,N'-bis(methylphenylalanyl)ethanediamine (Me2PheNN-2), added to the eluent. The aim is to investigate whether and how a copper(II) complex with no free equatorial positions can perform chiral discrimination of bidentate analytes such as unmodified amino acids. The problem is approached in a systematic way by: (a) varying the different chromatographic parameters (pH, selector concentration, eluent polarity); (b) performing chiral separation with the selector adsorbed on the stationary phase; (c) studying the ternary complex formation of these ligands with D- and L-amino acids in solution by glass electrode potentiometry and electrospray ionization MS. All the experimental data are consistent with a mechanism of chiral recognition, based on ligand exchange, which involves as selectors the species [Cu2L2H(-2)]2+ and [CuLH(-2)] and proceeds by displacement of two binding sites from the equatorial positions, giving rise to the ternary species [CuLA]+ and [CuLH(-1) A]. The most important factor responsible for chiral discrimination seems to be the affinity of the diastereomeric ternary complexes for the stationary phase since no enantioselectivity is observed in solution.  相似文献   
4.
Protonation and the CuII complexation constants of the dansylated polyamines N‐dansylethylenediamine ( 1 ), N‐dansyldiethylenetriamine ( 2 ), N‐dansyltriethylenetetramine ( 3 ), N′‐[2‐(dansylamino)ethyl]diethylenetriamine ( 4 ), and tris(2‐dansylaminoethyl)amine ( 5 ) were determined by glass‐electrode potentiometry in MeOH/H2O 9 : 1 (v/v) solution. For ligands 3 and 4 , the determinations were also performed in aqueous solution. The complexes formed by these ligands in neutral form correspond to those observed for the analogous unsubstituted monoprotonated amines, whereas, when the ligands are deprotonated at the sulfonamide moiety, the species parallel those of the corresponding amines. The molecular structures of the complexes were deduced from the VIS absorption spectra. The crystal structure of the [CuL2H−2] complex 6 of ligand 1 (L) was determined by X‐ray diffraction. The study of the photophysical properties of the ligands 3 – 5 showed that they are good fluorescent sensors for copper(II), which induced fluorescence quenching. Time‐resolved fluorescence measurements allowed us to clarify the sensing mechanism. The pH dependence of the quenching effect demonstrated that it occurs for all Cu2+ complexes, even for species in which the sulfonamide moiety is not deprotonated. Sensing of Cu2+ was compared with that of other metal ions (Co2+, Ni2+, Zn2+, Cd2+, Hg2+), and selectivity was studied as a function of pH. Ligands 3 and 4 were found to be selective chemosensors for Cu2+ in weakly acidic solution (pH ca. 4 – 5).  相似文献   
5.
A hierarchically structured composite material with interconnecting meso- and micropores has been developed with the aim to optimize zeolite performance. A general synthetic method has been developed that, in a controlled manner, allows for various types of nanosized zeolite to be incorporated into a three-dimensional mesoporous matrix. Nanosized zeolite Beta was used to exemplify this new approach, resulting in a system in which zeolite Beta shows a higher cracking activity per gram of zeolite than pure nanosized zeolite Beta for the model feed n-hexane. Additionally, FTIR studies of CO and NH3 adsorption revealed that the nature of the acid sites in the nanozeolite has been partially modified due to the interactions with the mesoporous matrix, TUD-1.  相似文献   
6.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号