首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   3篇
  国内免费   1篇
化学   128篇
物理学   12篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有140条查询结果,搜索用时 0 毫秒
1.
JPC – Journal of Planar Chromatography – Modern TLC - Flavonoid glycosides are much more polar than their aglycones and the two groups of compounds are difficult to separate by planar...  相似文献   
2.
JPC – Journal of Planar Chromatography – Modern TLC - Emodin and twelve phenolic acids (ellagic, gallic, protocatechuic, homoprotocatechuic, caffeic, p-hydroxybenzoic, p-coumaric,...  相似文献   
3.
The present study is concerned with the application of nonaqueous capillary electrophoresis (NACE) with electrochemical detection (ED) to the separation and quantitative determination of hydrazine (Hy) and its methyl derivatives. The best performance of NACE-ED was found when using 4 mM sodium acetate/10 mM acetic acid/methanol: acetonitrile = 1:2 as the running buffer, with a bare platinum working electrode set at +1.0 V in an end-column amperometric detection cell. The choice and ratio of suitable solvents for the separation and injection media played an essential role for the performance characteristics of the method. The limits of detection for Hy, methylhydrazine, symmetrical dimethylhydrazine, and unsymmetrical dimethylhydrazine were 5, 2, 12, and 1 ng/mL, respectively. This is between one and two orders of magnitude lower than that achieved by previously reported CE-ED methods in aqueous buffer systems in conjunction with various types of chemically modified electrodes. The practical utility of the new NACE-ED methodology is demonstrated in terms of the determination of traces of Hys in spiked environmental samples containing a wide range of explosives and related compounds.  相似文献   
4.
Nonaqueous capillary electrophoresis (NACE) which makes use of organic solvents in place of conventional aqueous electrophoresis buffers is gaining increasing importance among modern separation techniques. Recently, it has been shown that amperometric detection in conjunction with acetonitrile-based NACE offers an extended accessible potential range and an enhanced long-term stability of the amperometric responses generated at solid electrodes. The present contribution takes advantage of the latter aspect to develop reliable systems for NACE with indirect electrochemical detection (IED). In this context, several compounds such as (ferrocenylmethyl)trimethylammonium perchlorate, tris(1,10-phenanthroline)cobalt(III) perchlorate and bis(1,4,7-triazacyclononane)nickel(II) perchlorate were studied regarding their suitability to act as electroactive buffer additives for IED in NACE. The performance characteristics for the respective buffer systems were evaluated. Tetraalkylammonium perchlorates served as model compounds for the optimization of the NACE-IED system. Target analytes choline and acetylcholine could easily be separated and determined by means of NACE-IED. In the case of a buffer system containing 10(-4) M tris(1,10-phenanthroline)cobalt(III) perchlorate the limits of detection were 2.5 x 10(-7) M and 4.6 x 10(-7) M for choline and acetylcholine, respectively. With the elaborated analytical procedure choline could be determined in pharmaceutical preparations.  相似文献   
5.
6.
Oxidative stress plays a crucial role in DNA and RNA damage within biological cells. As a consequence, mutations of DNA can occur, leading to disorders like cancer and neurodegenerative and cardiovascular diseases. The oxidative attack of guanosine and 8-oxo-7,8-dihydroguanosine is simulated by electrochemistry coupled to capillary electrophoresis–mass spectrometry. The electrochemical conversion of the compound of interest is implemented in the injection protocol termed electrochemically assisted injection (EAI). In this way, oxidation products of guanosine can be generated electrochemically, separated by capillary electrophoresis, and detected by electrospray ionization time-of-flight mass spectrometry (EAI–CE–MS). A fully automated laboratory-made EAI cell with an integrated buffer reservoir and a compartment holding screen-printed electrodes is used for the injection. In this study, parameters like pH of the sample solution and the redox potential applied during the injection were investigated in terms of corresponding formation of well-known markers of DNA damage. The important product species, 8-oxo-7,8-dihydroguanosine, was investigated in a separate study to distinguish between primary and secondary oxidation products. A comparison of product species formed under alkaline, neutral, and acidic conditions is presented. To compare real biological systems with an analytical approach for simulation of oxidative stress, it is desirable to have a well-defined control over the redox potential and to use solutions, which are close to physiological conditions. In contrast to typical HPLC–MS protocols, the hyphenation of EAI, CE, and MS enables the generation and separation of species involved without the use of organic solvents. Thus, information of the electrochemical behavior of the nucleoside guanosine as well as the primary oxidation product 8-oxo-7,8-dihydroguanosine can be characterized under conditions close to the physiological situation. In addition, the migration behavior found in CE separations of product species can be used to identify compounds if several possible species have the same mass-to-charge values determined by MS detection.  相似文献   
7.
In this work, the electronic structure and spectroscopic properties of lumiflavin are calculated using various quantum chemical methods. The excitation energies for ten singlet and triplet states as well as the analysis of the electron density difference are assessed using various wave function‐based methods and density functionals. The relative order of singlet and triplet excited states is established on the basis of the coupled cluster method CC2. We find that at least seven singlet excited states are required to assign all peaks in the UV/Vis spectrum. In addition, we have studied the solvatochromic effect on the excitation energies and found differential effects except for the first bright excited state. Vibrational frequencies as well as IR, Raman and resonance Raman intensities are simulated and compared to their experimental counterparts. We have assigned peaks, assessed the effect of anharmonicity, and confirmed the previous assignments in case of the most intense transitions. Finally, we have studied the NMR shieldings and established the effect of the solvent polarity. The present study provides data for lumiflavin in the gas phase and in implicit solvent model that can be used as a reference for the protein‐embedded flavin simulations and assignment of experimental spectra.  相似文献   
8.
黄素类物质在生物体内广泛存在,是许多电子转移反应的活性中心,也是电子传递链的重要组成部分。其受到光照激发后引起的电子转移,是许多生命过程的基础与起始步骤。特别地,一种名为隐花色素的黄素蛋白在光激发后经一系列电子转移形成自旋相关自由基对,被认为是最有可能的生物磁敏物质,更使黄素体系电子转移过程的动力学,特别是自旋动力学过程倍受关注。对黄素电子转移过程及相关机理进行研究,有助于厘清多种生命过程的化学机理与影响因素。为此,科学界综合运用了多种仪器与测试手段,其中主要包括紫外-可见光谱,荧光光谱,瞬态吸收光谱,光化学诱导动态核极化(Photo-CIDNP)技术等。通过多年的研究,对黄素在生物体内的作用机理与电子转移过程的认识经历了由浅入深,不断深入的过程。紫外-可见光谱(UV-Vis)主要用于研究黄素系统中的电子激发,自旋动力学和电子转移。结合理论计算,UV-Vis还可以识别电子转移中涉及的基团并进行定量分析。荧光光谱可以识别电子受激发的物质,在反应过程中观察黄素和半醌中间体的产生和消耗,并确定其氧化还原和质子化状态。瞬态吸收光谱适于观测反应过程中出现的短寿命物种,其中飞秒泵浦探测技术的引入大大提高了观测的时间分辨率,并且可以通过光谱特征区分单重态和三重态的自由基对。光化学诱导动态核极化核磁共振(NMR)可以直接观察电子-核自旋动力学过程。磁场依赖性photo-CIDNP NMR揭示了控制单重态与三重态互变的因素,并提出了生物地磁导航可能依赖的化学机制。腔吸收与单分子光谱的运用,从技术上提高了实验装置的灵敏度并降低检测限。主要介绍黄素体系电子转移过程研究所运用的各种光谱手段与取得的成果,并展望其未来。  相似文献   
9.
Non-aqueous capillary electrophoresis with electrochemical detection (NACE-ED) was applied to the determination of cannabinoids in hair. The effect of different electrolyte compositions on the selectivity of the separation of tetrahydrocannabinol (THC), cannabinol (CBN), cannabidiol (CBD) and tetrahydrocannabinol carboxylic acid (THCA) was studied. Complete electrophoretic resolution was obtained using a strongly basic background electrolyte consisting of 5 mM sodium hydroxide dissolved in acetonitrile-methanol (1:1). Electrochemical detection yielded well defined signals in the oxidation mode. In order to obtain low limits of detection experimental parameters, which determine the sensitivity and the noise level, were optimized. A crucial parameter for sensitive measurements using a wall-tube flow cell as end-column detector is the distance between the capillary outlet and the working electrode. The highest signal-to-noise ratio using a 50 microm I.D. capillary was obtained at a distance of 25 microm. When the capillary outlet was moved away from the working electrode, thus reducing the strength of the separation field present at the working electrode, a large low frequency noise developed. This rise was attributed to disturbances of the hydrodynamic pattern in the flow cell. Analytical aspects such as sensitivity, reproducibility and selectivity were addressed in this work. The precision of NACE-ED regarding migration time and peak height for a sample containing 1 microg/ml THC was 0.4% and 1.1% (RSD), respectively (n=5). The calibration curve was linear for concentrations ranging between 0.1 and 10 microg/ml (r=0.998). The limit of detection for THC was 37 ng/ml, which is almost two orders of magnitude lower when compared with on-column UV detection. The method was evaluated using hair samples containing cannabinoids as sample material.  相似文献   
10.
Kinematic electron diffraction theory was used to analyze RHEED intensities from the O2(2 × 1)-W(110) surface structure. An expression was derived enabling us to compare kinematic theory with experimental absolute integrated intensities. To justify the use of kinematic theory we found diffraction conditions where there appealed to be a dynamical decoupling of beams scattered by the substrate from those of the surface structure. Under these diffraction conditions reasonable agreement between theory and experiment was obtained using a surface structure model proposed by Bauer. The surface structure model proposed by Germer and May did not adequately describe the observed intensities and we concluded that the Bauer model was the more plausible representation of the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号