首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2009年   1篇
  2007年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
A bulk PMMA sample was irradiated by gamma rays (0.69 Gy. s−1), and its structural changes were monitored by steric exclusion chromatography, differential scanning calorimetry, dynamic mechanical spectroscopy and dilatometry. The glass transition temperature Tg decreases more than predicted from the molecular weight data, but the corresponding excess of change is not thermoreversible and can be suppressed by annealing. Strong not thermoreversible changes are also observed around the first secondary transition temperature (≈︁ 60°C) as well as in mechanical spectra and in dilatometric curves. Various hypothetical explanations are examined.  相似文献   
2.
The mechanism of facilitated transport of metal ions across polymer inclusion membranes (PIMs) is revised on the basis of transport flux measurements and of new data brought by techniques sensitive to local inter-molecular interactions and molecular diffusion. Cellulose triacetate (CTA) membranes built with two types of inclusion carriers: a liquid one Aliquat 336 and a crystalline one Lasalocid A, both able to carry metal ions across PIMs and supported liquid membranes (SLMs) made of the same components, have been compared. Both PIM systems show similar effects for what concern the need of a carrier threshold concentration for the occurrence of a transport flux across PIM as revealed by flux and fluorescence correlation spectroscopy (FCS) measurements, and the dependence of the chemical nature of plasticizers on the metal ion flux. These systems also present similar Raman and far IR signatures of structural evolution of PIMs with the increase of the carrier concentration within the CTA matrix.

All the presented data are interpreted as concern PIMs, according to an evolution of chemical interactions between components of the polymeric membrane able to lead to a phase transition. This phase transition type of the carrier-plasticized polymer system is induced by the increase of carrier concentration in the polymer chains. The PIM progressively organizes itself like a liquid SLM because of the enhancement of preferential solvent interactions between the carrier and the plasticizer.

The main conclusion of this study is that the classically adopted “hopping” transport mechanism between fixed carrier sites in a PIM does not apply to such carrier chemically unbound to polymer membrane systems.  相似文献   

3.
Hygrothermal aging of Nafion   总被引:1,自引:0,他引:1  
The membrane durability is a critical issue for the development of Proton Exchange Membrane Fuel Cells (PEMFC). Since PEMFC in situ tests were not conclusive to determine Nafion® membrane degradation mechanism, ex situ aging tests were performed on Nafion® 112 in practical fuel cell usage conditions. The polymer chemical structure evolution was investigated by infrared spectroscopy (IR) and Nuclear Magnetic Resonance (NMR) while its hydrophilicity, directly linked to its protonic conductivity, is established through sorption isotherms by Dynamical Vapour Sorption (DVS). Durability studies over a period of 400 days revealed membrane degradation through a modification of sulfonic acid end-groups. Formation of sulfonic anhydride (from the condensation of sulfonic acids) was strongly demonstrated by IR spectroscopy and, indirectly, by NMR. The substitution of ionic end-groups by less hydrophilic anhydrides leads to a significant decrease of water uptake and thus of its hydrophilicity. Surprisingly, kinetic study reveals that the hygrometric level accelerates this condensation reaction.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号