首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2012年   3篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A visible‐light driven H2 evolution system comprising of a RuII dye ( RuP ) and CoIII proton reduction catalysts ( CoP ) immobilised on TiO2 nanoparticles and mesoporous films is presented. The heterogeneous system evolves H2 efficiently during visible‐light irradiation in a pH‐neutral aqueous solution at 25 °C in the presence of a hole scavenger. Photodegradation of the self‐assembled system occurs at the ligand framework of CoP , which can be readily repaired by addition of fresh ligand, resulting in turnover numbers above 300 mol H2 (mol CoP )?1 and above 200,000 mol H2 (mol TiO2 nanoparticles)?1 in water. Our studies support that a molecular Co species, rather than metallic Co or a Co‐oxide precipitate, is responsible for H2 formation on TiO2. Electron transfer in this system was studied by transient absorption spectroscopy and time‐correlated single photon counting techniques. Essentially quantitative electron injection takes place from RuP into TiO2 in approximately 180 ps. Thereby, upon dye regeneration by the sacrificial electron donor, a long‐lived TiO2 conduction band electron is formed with a half‐lifetime of approximately 0.8 s. Electron transfer from the TiO2 conduction band to the CoP catalysts occurs quantitatively on a 10 μs timescale and is about a hundred times faster than charge‐recombination with the oxidised RuP . This study provides a benchmark for future investigations in photocatalytic fuel generation with molecular catalysts integrated in semiconductors.  相似文献   
2.
Protons preferred: A cobalt catalyst is reported that evolves H(2) electro- and photocatalytically at room temperature, in pH-neutral water, and in the presence of atmospheric O(2) . The catalyst shows respectable Faradaic efficiencies under N(2) and 21?% O(2) in N(2) , and can be used under both homogeneous and heterogeneous conditions.  相似文献   
3.
We report on a self-assembled system comprising of a molecular H(2) production cobalt catalyst attached on a ruthenium dye-sensitised TiO(2) nanoparticle. Visible light irradiation of the dispersed nanoparticles in the presence of the sacrificial electron donor triethanolamine produces H(2) photocatalytically in pH neutral water and at room temperature.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号