首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   10篇
化学   135篇
晶体学   3篇
数学   24篇
物理学   36篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   1篇
  2017年   4篇
  2016年   5篇
  2015年   12篇
  2014年   10篇
  2013年   14篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   13篇
  2007年   6篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1953年   2篇
  1947年   1篇
排序方式: 共有198条查询结果,搜索用时 31 毫秒
1.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
2.
3.
We have confirmed biexciton formation in an organic-inorganic hybrid quantum-well material (C4H9NH3)2PbBr4 by photoluminescence and two-photon absorption measurements. The biexciton has extremely large binding energy, 60 meV, which to our knowledge is the largest value ever reported for a semiconductor. By analyzing the spectrum of biexciton luminescence, the biexciton gas temperature was found to be much higher than the bath temperature due to a higher local temperature arising from the large biexciton binding energy.  相似文献   
4.
The effect of added substances was studied on the yield of glutamic acid produced by gamma-ray irradiation of 2-oxoglutaric acid and ammonia in aqueous solution. The contents of amino acids in the irradiated solutions were determined with amino acids analyzer. Sodium nitrate, allyl alcohol or sodium formate was used as an added substance. The yield of glutamic acid significantly decreased by the addition of nitrate, and it was little affected by the addition of allyl alcohol. In the presence of formate the yield increased from G = 0.4 (2-oxoglutaric acid 0.05M and ammonium hydroxide 2M) to G = 1.1. As a result, it was found that hydrated electron contributes on the formation of glutamic acid, but hydroxyl radical does not. The yield showed a maximum at ca. 0.1 M ammonium hydroxide concentration. These facts indicate that NH2 radical does not contribute to the formation of glutamic acid. As a reaction mechanism, it can be explained that 2-oxoglutaric acid which had been reduced by hydrated electron reacts with ammonia.  相似文献   
5.
We present three Slater-type atomic orbital (STO) valence basis (VB) sets for the first and second row atoms, referred to as the VB1, VB2, and VB3 bases. The smallest VB1 basis has the following structure: [3, 1] for the H and He atoms, [5, 1] for Li and Be, and [5, 3, 1] for the B to Ne series. For the VB2 and VB3 bases, both the number of shells and the number of functions per shell are successively increased by one with respect to VB1. With the exception of the H and Li atoms, the exponents for the VB1 bases were obtained by minimizing the sum of the Hartree-Fock (HF) and frozen-core singles and doubles configuration interaction (CISD FC) energies of the respective atoms in their ground state. For H and Li, we minimized the sum of the HF and CISD FC energies of the corresponding diatoms (i.e., of H(2) or Li(2)) plus the ground-state energy of the atom. In the case of the VB2 basis sets, the sum that was minimized also included the energies of the positive and negative ions, and for the VB3 bases, the energies of a few lowest lying excited states of the atom. To account for the core correlations, the VBx (x = 1, 2, and 3) basis sets for the Li to Ne series were enlarged by one function per shell. The exponents of these extended (core-valence, CV) basis sets, referred to, respectively, as the CVBx (x = 1, 2, and 3) bases, were optimized by relying on the same criteria as in the case of the VBx (x = 1, 2, and 3) bases, except that the full CISD rather than CISD FC energies were employed. We show that these polarized STO basis sets provide good HF and CI energies for the ground and excited states of the atoms considered, as well as for the corresponding ions.  相似文献   
6.
Dehydration of abiet-8-ene-7β, 13β-diol (ibozol, 1 ) leads to abieta-7,9(11)-dien-13β-ol ( 2 ) which aromatizes slowly to the known abieta-8,11,13-triene ( 3 ). Photosensitized oxygenation of the heteroannular diene 2 yields a mixture from which three compounds were identified; abiet-7-ene-9α, 11α, 13β-triol ( 4 ), abieta-8,11,13-trien-7-one ( 5 ), and abieta-8,11,13-trien-7α-ol ( 6 ).  相似文献   
7.
Ema T  Ouchi N  Doi T  Korenaga T  Sakai T 《Organic letters》2005,7(18):3985-3988
A new type of chiral receptor (R,R)- or (S,S)-1b with C(2) symmetry was synthesized. An induced-fit type of binding behavior of 1b for diamines was revealed by CD spectroscopy. NMR studies demonstrated that 1b can function as a highly sensitive chiral shift reagent for the determination of the enantiomeric purity of chiral diamines, aziridine, and isoxazoline at the microgram level. [structure: see text]  相似文献   
8.
The negatively charged, water‐soluble, hydrophobically modified poly(sodium glutamate)s containing different amounts of alkyl grafts were synthesized. First, poly(γ‐benzyl‐L‐glutamate) was prepared by ring‐opening polymerization of the corresponding N‐carboxyanhydride, which was in the next step aminolysed with octylamine. After removal of the remaining benzyl protective groups, the alkyl‐modified poly(sodium glutamate)s [P(Glu‐oa)] were obtained and, together with the oppositely charged N,N,N‐trimethyl chitosan (TMC), used for the preparation of nanoparticles (NPs) of a recombinant granulocyte colony‐stimulating factor (GCSF) protein by polyelectrolyte complexation method. It is observed that, beside electrostatic interaction, the hydrophobic grafts on poly(sodium glutamate)s significantly contribute to association efficiency (AE) with GCSF protein. The addition of TMC solution to the dispersion of GCSF/P(Glu‐oa) complexes results in formation of much more defined NPs with high AE and final protein loading. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2976–2985  相似文献   
9.
The most common protocols for the quantitative determination of the enantiomeric excess (ee) of raw mixtures by ESI-MS reveal inadequate in cases where the distribution of diastereomeric derivatives diverges from the ee of original solutions. This phenomenon is attributable to a matrix effect, i.e., to the stereospecific formation of high order noncovalent adducts in the ESI droplets, which alters the actual availability of the diastereomeric species under MS analysis. In this frame, the assumption of classic protocols that the ionization correction factor q is independent on the composition of the mixture submitted to analysis is questionable. An alternative methodology is presented in this paper, which is aimed at circumventing the problem by excluding any chemical derivatization of the original raw mixture. It is based on the measurement of the actual distribution of ESI-formed proton-bound diastereomeric complexes from the enantiomeric mixture through a careful analysis of their reaction kinetics with a suitable reactant.   相似文献   
10.
The fluorescent tag 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ Fluor reagent kit from Waters) is a commercial N-terminal label for proteinogenic amino acids (AAs), designed for reversed-phase separation and quantification of the AA racemates. The applicability of AQC-tagged AAs and AA-type zwitterionic compounds was tested for enantiomer separation on the tert-butyl carbamate modified quinine and quinidine based chiral stationary phases, QN-AX and QD-AX employing polar-organic elution conditions. The investigated test analytes included the enantiomers of the positional isomers of isoleucine (Ile), threonine, homoserine, and 4-hydroxyproline. Furthermore, β-AAs, cyclic, and heterocyclic AAs including trans-2-amino-cyclohexane carboxylic acid and trans-2-aminocyclohexyl sulfonic acid, phenylalanine derivatives substituted with halides with increasing electronegativity and 3,4-dihydroxyphenylalanine, cysteine-related derivatives including homocysteic acid, methionine sulfone, cysteine-S-acetic acid, and cysteine-S-acetamide as well as a small range of aminophosphonic acids were enantioseparated. A mechanistic interaction study of AQC-AAs in comparison with fluoresceine isothiocyanate-labeled AAs was performed. The chiral and chemoselective recognition processes involved in enantiomer separation and retention was systematically discussed. Special emphasis was set on the influential factors exhibited by the chemistry, branching position, and spatial properties of the investigated zwitterionic analytes. The general interest to separate and distinguish between different types of branched-chained AAs and metabolic side products thereof lies in the toxicity of some of these compounds, which makes for instance allo–Ile an attractive candidate in disease-related biomarker research.
Figure
Separation of the four AQC-tagged isomers of 4-hydroxyproline (trans-D, cis-D, trans-L and cis-L) on the chiral stationary phase QD-AX  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号