首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
化学   76篇
数学   2篇
物理学   5篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   17篇
  2010年   3篇
  2008年   3篇
  2007年   6篇
  2006年   12篇
  2005年   10篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
Almost all photosystem I (PSI) complexes from oxygenic photosynthetic organisms contain chlorophylls that absorb at longer wavelength than that of the primary electron donor P700. We demonstrate here that the low-energy pool of chlorophylls in the PSI-LHCI complex from the green alga Chlamydomonas reinhardtii, containing five to six pigments, is significantly blue-shifted (A(max) at 700 nm at 4 K) compared to that in the PSI core preparations from several species of cyanobacteria and in PSI-LHCI particles from higher plants. This makes them almost isoenergetic with the primary donor. However, they keep the other characteristic features of "red" chlorophylls: clear spectral separation from the bulk chlorophylls, big Stokes shift revealing pronounced electron-phonon coupling, and large homogeneous and inhomogeneous broadening of approximately 170 and approximately 310 cm(-1), respectively.  相似文献   
2.
The central chirality of simple amino alcohols was amplified by binding to a dynamically axially chiral biphenol receptor and expressed as supramolecular chirality by effecting a change from a nematic to a cholesteric liquid crystalline phase.  相似文献   
3.
Abstract— Chlorophyll fluorescence spectra of LCHII, the light harvesting complex of photosystem II, have been recorded in the aggregated and trimeric forms for a range of temperatures from 293 to 4 K. At least five long-wavelength emitters in the 682–702 nm region with different temperature dependencies were found in the spectra of the aggregates. At 293 K the yield of LCHII trimers was higher than aggregates by a factor of 4, but, upon lowering the temperature, a fluorescence rise was observed which was much stronger for LCHII aggregates than for LCHII trimers, so that at 4 K their yields were comparable. The implications of these data in terms of the function of LCHII are discussed.  相似文献   
4.
Light, oxygen, or voltage (LOV) domains constitute a new class of photoreceptor proteins that are sensitive to blue light through a noncovalently bound flavin chromophore. Blue-light absorption by the LOV2 domain initiates a photochemical reaction that results in formation of a long-lived covalent adduct between a cysteine and the flavin cofactor. We have applied ultrafast spectroscopy on the photoaccumulated covalent adduct state of LOV2 and find that, upon absorption of a near-UV photon by the adduct state, the covalent bond between the flavin and the cysteine is broken and the blue-light-sensitive ground state is regained on an ultrafast time scale of 100 ps. We thus demonstrate that the LOV2 domain is a reversible photochromic switch, which can be activated by blue light and deactivated by near-UV light.  相似文献   
5.
Light-harvesting complex I (LHCI), which serves as a peripheral antenna for photosystem I (PSI) in green plants, consists mainly of four polypeptides, Lhca1-4. We report room temperature emission properties of individual reconstituted monomeric Lhca proteins (Lhca1, -2, -3, and -4) and dimeric Lhca1/4, performed by steady-state and time-resolved fluorescence techniques. The emission quantum yields of the samples are approximately 0.12, 0.085, 0.081, 0.041, and 0.063 for Lhca1, -2, -3, -4, and the -1/4 dimer, respectively, which is considerably lower than the value of 0.22 found for light-harvesting complex II (LHCII), the main peripheral antenna complex of photosystem II in green plants. The decay components of LHCI proteins can be divided in two categories: Lhca1 and Lhca3 have decay times of 1.1-1.6 ns and 3.3-3.6 ns, and Lhca2 and Lhca4 have decay times of 0.7-0.9 ns and 3.1-3.2 ns. These categories seem to correlate with the pigment composition of the samples. All decay times are faster than that observed previously for LHCII. When the absolute emission yields and the lifetimes of the Lhca samples are combined, the overall emission properties of the individual Lhca proteins are expressed in terms of their emitting dipole moment strength. In the samples without extreme red states, that is, Lhca1 and Lhca2, the emitting dipole moment has a value close to unity (relative to monomeric chlorophyll in acetone), which is similar to that for LHCII, whereas, in the samples with the red-most state (F-730), that is, Lhca3, -4, and the -1/4 dimer, the emitting dipole moment has a value less than unity (0.6-0.8), which can be explained by mixing the red-most (exciton) state with a dark charge-transfer state, as suggested in previous PSI red pigment studies. In addition, we find a lifetime component of approximately 50-150 ps in all red-pigment-containing samples, which cannot be due to "slow" energy transfer, but is instead assigned to an unrelaxed state of the pigment-protein, which, on this time-scale, is converted into the final emitting state.  相似文献   
6.
The present study describes the construction of a Rhodobacter sphaeroides light-harvesting (LH2) mutant in which the charged residue βSLys23 is changed by site-directed mutagenesis to a Gin residue, and the characterization of the resulting mutant complex by a range of spectroscopic techniques. In the 77 K absorption spectrum of the mutant, the peak equivalent to the 850 nm peak in the wild-type membrane is blue-shifted by approximately 18 nm to 837 nm; except for this blue-shift, the 77 K. fluorescence excitation and emission spectra and the circular dichroism spectrum of the mutant are very similar to the equivalent spectra from the wild-type membranes, suggesting that the mutation βLys23 → Gin probably does not cause any major changes in the conformation or aggregation state of these membranes. Possible causes of the 18 nm blue-shift in the absorption spectrum are discussed.  相似文献   
7.
We report ultrafast femtosecond transient absorption measurements of energy-transfer dynamics for the antenna protein phycoerythrin 545, PE545, isolated from a unicellular cryptophyte Rhodomonas CS24. The phycoerythrobilins are excited at both 485 and 530 nm, and the spectral response is probed between 400 and 700 nm. Room-temperature measurements are contrasted with measurements at 77 K. An evolution-associated difference spectra (EADS) analysis is combined with estimations of bilin spectral positions and energy-transfer rates to obtain a detailed kinetic model for PE545. It is found that sub pulse-width dynamics include relaxation between the exciton states of a chromophore dimer (beta 50/60) located in the core of the protein. Energy transfer from the lowest exciton state of the phycoerythrobilin (PEB) dimer to one of the periphery 15,16-dihydrobiliverdin (DBV) bilins is found to occur on a time scale of 250 fs at room temperature and 960 fs at 77 K. A host of energy-transfer dynamics involving the beta 158, beta 82, and alpha 19 bilins occur on a time scale of 2 ps at room temperature and 3 ps at 77 K. A final energy transfer occurs between the red-most DBV bilins with a time scale estimated to be approximately 30 ps. The role of the centrally located phycoerythrobilin dimer is seen as crucial-spectrally as it expands the cross-section of absorption of the protein; structurally as it sits in the middle of the protein acting as an intermediary trap; and kinetically, as the internal conversion and subsequent red-shift of the excitation is extremely fast.  相似文献   
8.
By using a chiral molecular motor as a dopant in a cholesteric liquid‐crystalline film, fully reversible control of the reflection color of this film across the entire visible spectrum is possible. The large difference in helical twisting power between the two isomeric forms of the motor allows efficient light‐ and heat‐induced switching of the helicity of the cholesteric liquid‐crystal superstructure.  相似文献   
9.
Stimuli-responsive soft materials enable controlled release of loaded drug molecules and biomolecules. Controlled release of potent chemotherapeutic or immunotherapeutic agents is crucial to reduce unwanted side effects. In an effort to develop controlled release strategies that can be triggered by using Cerenkov luminescence, we have developed polymer hydrogels that can release bovine serum albumin and immunoglobulin G by using light (254 nm–375 nm) as a trigger. We describe the synthesis and photochemical characterization of two light sensitive phenacyl bis-azide crosslinkers that are used to prepare transparent self-supporting hydrogel patches. One crosslinker was designed to optimize the overlap with the Cerenkov luminescence emission window, bearing an π-extended phenacyl core, resulting in a high quantum yield (14 %) of photocleavage when irradiated with 375 nm light. We used the extended phenacyl crosslinker for the preparation of protein-loaded dextran hydrogel patches, which showed efficient and selective dosed release of bovine serum albumin or immunoglobulin G after irradiation with 375 nm light. Cerenkov-triggered release is as yet inconclusive due to unexpected side-reactivity. Based on the high quantum yield, efficient release and large overlap with the Cerenkov window, we envision application of these photosensitive soft materials in radiation targeted drug release.  相似文献   
10.
Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, man-made catalytically controlled networks are rare. We incorporated catalysis into an artificial fuel-driven out-of-equilibrium CRN, where the forward (ester formation) and backward (ester hydrolysis) reactions are controlled by varying the ratio of two organocatalysts: pyridine and imidazole. This catalytic regulation enables full control over ester yield and lifetime. This fuel-driven strategy was expanded to a responsive polymer system, where transient polymer conformation and aggregation are controlled through fuel and catalyst levels. Altogether, we show that organocatalysis can be used to control a man-made fuel-driven system and induce a change in a macromolecular superstructure, as in natural non-equilibrium systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号