首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434440篇
  免费   20723篇
  国内免费   1209篇
化学   260987篇
晶体学   6291篇
力学   18153篇
综合类   9篇
数学   47084篇
物理学   123848篇
  2023年   4453篇
  2021年   4825篇
  2020年   7074篇
  2019年   5194篇
  2018年   6164篇
  2017年   4506篇
  2016年   11376篇
  2015年   9259篇
  2014年   10738篇
  2013年   21981篇
  2012年   15643篇
  2011年   16602篇
  2010年   13486篇
  2009年   13076篇
  2008年   15221篇
  2007年   15083篇
  2006年   13857篇
  2005年   12340篇
  2004年   11343篇
  2003年   9999篇
  2002年   9743篇
  2001年   11527篇
  2000年   8988篇
  1999年   7035篇
  1998年   5574篇
  1997年   5726篇
  1996年   5518篇
  1995年   5146篇
  1994年   4908篇
  1993年   4893篇
  1992年   5454篇
  1991年   5213篇
  1990年   5115篇
  1989年   4959篇
  1988年   5004篇
  1987年   5026篇
  1986年   4609篇
  1985年   6223篇
  1984年   6428篇
  1983年   5306篇
  1982年   5646篇
  1981年   5575篇
  1980年   5418篇
  1979年   5569篇
  1978年   5911篇
  1977年   5854篇
  1976年   5835篇
  1975年   5588篇
  1974年   5463篇
  1973年   5511篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid–liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 μl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.  相似文献   
2.
Yang  T. L.  Kao  C. L.  Kuo  C. E.  Yeh  H. C.  Li  W. J.  Li  H. T.  Chen  C. Y. 《Chemistry of Natural Compounds》2022,58(5):825-827
Chemistry of Natural Compounds - A novel bibenzyl derivative, hydrangchinenin (1), was isolated from the stems of Hydrangea chinensis Maxim. (Hydrangeaceae). Its structure was determined on the...  相似文献   
3.
Russian Journal of General Chemistry - Aminophosphabetaines, i.e., isobutyl {[alkyl(dimethyl)ammonio]methyl}phosphonates with higher alkyl substituents at the nitrogen atom, were obtained by a...  相似文献   
4.
The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.  相似文献   
5.
At present, the reactivity of cyclic alkanes is estimated by comparison with acyclic hydrocarbons. Due to the difference in the structure of cycloalkanes and acycloalkanes, the thermodynamic data obtained by analogy are not applicable. In this study, a molecular beam sampling vacuum ultraviolet photoionization time-of-flight mass spectrometer (MB-VUV-PI-TOFMS) was applied to study the low-temperature oxidation of cyclopentane (CPT) at a total pressure range from 1–3 atm and low-temperature range between 500 and 800 K. Low-temperature reaction products including cyclic olefins, cyclic ethers, and highly oxygenated intermediates (e. g., ketohydroperoxide KHP, keto-dihydroperoxide KDHP, olefinic hydroperoxides OHP and ketone structure products) were observed. Further investigation of the oxidation of CPT – electronic structure calculations – were carried out at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+ G(d,p) level to explore the reactivity of O2 molecules adding sequentially to cyclopentyl radicals. Experimental and theoretical observations showed that the dominant product channel in the reaction of CPT radicals with O2 is HO2 elimination yielding cyclopentene. The pathways of second and third O2 addition – the dissociation of hydroperoxide – were further confirmed. The results of this study will develop the low-temperature oxidation mechanism of CPT, which can be used for future research on accurately simulating the combustion process of CPT.  相似文献   
6.
Mechanics of Composite Materials - Carbon fiber (CF)/ polyamide (PA6) composites are one of the most promising thermoplastic materials for automobile applications. However, the interfacial...  相似文献   
7.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
8.
Reactivity studies of the GeII→B complex L(Cl)Ge⋅BH3 ( 1 ; L=2-Et2NCH2-4,6-tBu2-C6H2) were performed to determine the effect on the GeII→B donation. N-coordinated compounds L(OtBu)Ge⋅BH3 ( 2 ) and [LGe⋅BH3]2 ( 3 ) were prepared. The possible tuning of the GeII→B interaction was proved experimentally, yielding compounds 1-PPh2-8-(LGe)-C10H6 ( 4 ) and L(Cl)Ge⋅GaCl3 ( 5 ) without a GeII→B interaction. In 5 , an unprecedented GeII→Ga coordination was revealed. The experimental results were complemented by a theoretical study focusing on the bonding in 1 − 5 . The different strength of the GeII→E (E=B, Ga) donation was evaluated by using energy decomposition analysis. The basicity of different L(X)Ge groups through proton affinity is also assessed.  相似文献   
9.
A selective, highly sensitive, precise, and novel bioanalytical method has been developed and validated to quantify sinococuline, an active constituent present in the phytopharmaceutical drug product containing Cocculus hirsutus plant extract, in vivo. Chromatographic separation was achieved on a Luna Omega Polar-C18 bonded analytical column maintained at 45°C. The isocratic mobile phase consisted of methanol and ammonium formate buffer (60:40, v/v) at acidic pH with a low flow rate of 0.250 mL/min. Detection was performed on an API 4000 mass spectrometer using electrospray ionization in positive polarity and multiple reaction monitoring mode to achieve a lower limit of quantification of 1.50 ng/mL. Excellent accuracy and precision were obtained after extracting the analyte from plasma samples using a chemical analogue as an internal standard in the absence of an isotope-labeled compound. The extraction efficacy was evidenced from recovery study, and the analyte was found to be stable in plasma. Validation study demonstrated linearity with coefficient of correlation, r ≥ 0.99, and minimal matrix effect. This bioanalytical method was successfully applied to evaluate pharmacokinetic parameters of sinococuline from a phase I clinical trial of an aqueous extract of C. hirsutus in healthy human volunteers.  相似文献   
10.
In this concept review, the fundamental and polymerization chemistry of inverse vulcanization for the preparation of statistical and segmented sulfur copolymers, which have been actively developed and advanced in various applications over the past decade is discussed. This concept review delves into a discussion of step-growth polymerization constructs to describe the inverse vulcanization process and discuss prepolymer approaches for the synthesis of segmented sulfur polyurethanes. Furthermore, this concept review discusses the advantages of inverse vulcanization in conjunction with dynamic covalent polymerization and post-polymerization modifications to prepare segmented block copolymers with enhanced thermomechanical and flame retardant properties of these materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号