首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Morphological and thermodynamic transitions in drugs as well as their amorphous and crystalline content in the solid state have been distinguished by thermal analytical techniques, which include dielectric analysis (DEA), differential scanning calorimetry (DSC), and macro-photomicrography. These techniques were used successfully to establish a structure versus property relationship with the United States Pharmacopeia standard set of active pharmaceutical ingredient (API) drugs. A distinguishing method is the DSC determination of the amorphous and crystalline content which is based on the fusion properties of the specific drug and its recrystallization. The DSC technique to determine the crystalline and amorphous content is based on a series of heat and cool cycles to evaluate the drugs ability to recrystallize. To enhance the amorphous portion, the API is heated above its melting temperature and cooled with liquid nitrogen to ?120 °C (153 K). Alternatively a sample is program heated and cooled by DSC at a rate of 10 °C min?1. DEA measures the crystalline solid and amorphous liquid API electrical ionic conductivity. The DEA ionic conductivity is repeatable and differentiates the solid crystalline drug with a low conductivity level (10?2 pS cm?1) and a high conductivity level associated with the amorphous liquid (10pS cm?1). The DSC sets the analytical transition temperature range from melting to recrystallization. However, analysis of the DEA ionic conductivity cycle establishes the quantitative amorphous and crystalline content in the solid state at frequencies of 0.10–1.00 Hz and to greater than 30 °C below the melting transition as the peak melting temperature. This describes the “activation energy method.” An Arrhenius plot, log ionic conductivity versus reciprocal temperature (K?1), of the pre-melt DEA transition yields frequency dependent activation energy (E a, J mol?1) for the complex charging in the solid state. The amorphous content is inversely proportional to the E a where the E a for the crystalline form is higher and lower for the amorphous form with a standard deviation of ±2%. There was a good agreement between the DSC crystalline melting, recrystallization, and the solid state DEA conductivity method with relevant microscopic evaluation. An alternate technique to determine amorphous and crystalline content has been established for the drugs of interest based on an obvious amorphous and crystalline state identified by macro-photomicrography and compared to the conductivity variations. This second “empirical method” correlates well with the “activation energy” method.  相似文献   
2.
Malaria affects over 500 million people worldwide leading to 1–2 million deaths each year, the majority of whom are children. Four Plasmodium species cause malaria in humans. To properly diagnose, and correctly treat malarial infections, accurate diagnosis of infection is required. Proper diagnosis of infection will result in a reduction of morbidity, mortality, and of drug resistant parasites. However, the current tests for malaria diagnosis do not efficiently identify the appropriate human and parasite biomarkers associated with disease. Detection of specific inflammatory mediators such as cytokines associated with malaria pathogenesis will aid the determination of disease progression, disease prognosis, and the early diagnosis of malaria infection. In this study, we used dielectric thermal analysis (DETA), thermogravimetric analysis, and differential scanning calorimetry (DSC) to characterize five human cytokines (IL-1α, IL-2, IL-4, IL-6, and IL-10), to demonstrate how their thermoanalytical properties can be investigated for sensor design. Analysis for DETA was performed at a frequency range of 0.1–300,000 Hz. Permittivity and loss factor measurements were used to calculate tan δ values. Peak frequencies were used to determine dielectric signatures for each cytokine. The peak frequencies were different for each cytokine analyzed. In addition, activation energies were frequency dependent for IL-2 but frequency independent for the remaining four cytokines. Cytokines were also examined using DSC which established variance in heat of crystallization and heat of fusion of solvent among the five cytokines. A noticeable differentiation was observed with IL-1α among the other four cytokines when analyzed using trend analysis. Detection of unique dielectric signals will aid development of sensitive dielectric sensors capable of detecting cytokines in various human samples.  相似文献   
3.
Novel dielectric behavior of a linear increase in ionic conductivity prior to melt temperature was observed for active pharmaceutical ingredients (APIs), organic chemicals, amino acids, and carbohydrates. Though, there are solids like polyolefins and long chain organic compounds (tetracosane, pentacosane) which do not exhibit this premelt behavior (i.e., the temperature where the onset of increase in ionic conductivity to melt temperature). We have discovered novel electrical conductivity properties and other physical analytical variations which can lead to unique synthetic routes of certain chemical entities. The above-mentioned unique variations are not related to solid–solid transitions which are quite often observed in pharmaceutical crystalline solids. These new properties are related to amorphous crystalline behavior of a solid. We have also studied the effect of various experimental variables: such as amount of mass tested, applied frequency at a given electric field and heating rate, which results in varying the onset temperature of the increase in ionic conductivity. Melting of the solids was correlated using differential scanning calorimetry (DSC). Activation energies for all the solids were measured in the premelt region using an Arrhenius plot at a specific frequency since we observed changes in the conductivity with frequency. This study focused on frequencies 0.1 to 10 Hz, since the conductivity at these frequencies related to surface analysis. This new physical properties are leading to new electro synthetic procedures to modify or prepare chemicals.  相似文献   
4.
Thermal mechanical analysis (TMA) of crystalline drugs and excipients in their pre-melt temperature range performed in this study corroborate their newly found linear dielectric conductivity properties with temperature. TMA of crystalline active pharmacy ingredients (APIs) or excipients shows softening at 30–100 °C below the calorimetric melting phase transition, which is also observed by dielectric analysis (DEA). Acetophenetidin melts at 135 °C as measured calorimetrically by DSC, but softens under a low mechanical stress at 95 °C. At this pre-melting temperature, the crystals collapse under the applied load, and the TMA probe shows rapid displacement. The mechanical properties yield a softening structure and cause a dimensionally slow disintegration resulting in a sharp dimensional change at the melting point. In order to incorporate these findings into a structure–property relationship, several United States Pharmacopeia (USP) melting-point standard drugs were evaluated by TMA, DSC, and DEA, and compared to the USP standard melt temperatures. The USP standard melt temperature for vanillin (80 °C) [1], acetophenetidin (135 °C) [2], and caffeine (235 °C) [3] are easily verified calorimetrically via DSC. The combined thermal analysis techniques allow for a wide variety of the newly discovered physical properties of drugs and excipients.  相似文献   
5.
Cytokines and soluble cytokine receptors serve as important protein biomarkers for chronic and infectious disease diagnosis. The development of biosensors capable of detecting cytokines or their soluble receptors in patient bodily fluids is a growing area of research. In an ongoing series of studies to understand the thermal analytical behavior of cytokines and their soluble receptors, dielectric thermal analysis (DETA) and thermogravimetry (TG) were used in investigations to determine if differentiations based on dielectric properties (e.g., conductivity) of the proteins could be identified. Permittivity (ε′) and dielectric loss factor (ε″) measurements were performed over a frequency range of 0.1–300,000 Hz. Up to 20 min, water associated with the samples was conductive, interacting with the proteins and affecting the temperature-dependent relaxation spectra of proteins. A trend analysis revealed differences between surface charge at 0.1 Hz and bulk charge at 300,000 Hz. In addition, the greatest change detected among proteins was due to the conductivity (dielectric loss factor). Beyond a 20 min drying time, the observed conductivity was due to intrinsic properties of the proteins with limited dependence on frequency. A 100% water loss was obtained for samples within 20–30 min by TG. Sample drying by TG could serve as a preparatory step in drying protein samples for further DETA and DSC analysis.  相似文献   
6.
Cytokines are small regulatory proteins secreted mostly by cells of the immune system. Cytokines participate in anti-inflammatory and pro-inflammatory processes in the body and in responses to host exposure to pathogens. In this study, the thermal behavior of human recombinant cytokines and soluble cytokine receptors; IFNγ, TNFα, IL-1 receptor antagonist, soluble TNF-receptor types 1 and 2, and sIL-2 receptor α were analyzed by dielectric thermal analysis at 37 °C and by thermogravimetry. Measurements were performed at a frequency range of 0.1–300,000 Hz. Permittivity and loss factor measurements were used to calculate mobility of charges (tan δ values) in the proteins from Debye plots. Peak frequencies and polarization times were used to determine dielectric signatures for each cytokine and receptor. Peak frequencies and polarization times were obtained for each cytokine and receptor analyzed. Detection of unique dielectric signatures of the proteins will aid development of sensitive dielectric sensors capable of detecting cytokines and soluble cytokine receptors in various human samples for malaria diagnosis.  相似文献   
7.
We have observed unique variations in AC electrical conductivity of solids when studied with respect to temperature, time, and frequency. A wide range of solids were examined for this study e.g., organics, polymers, carbohydrates, active pharmacy ingredients (APIs), and amino acids. The observed dielectric analysis conductivity for this great number of organic materials follows an Arrhenius plot of log polar ionic conductivity which is linearly related to reciprocal temperature and the correlation of coefficient is 0.992–0.999. These experimental observations support the polaron hopping conduction model. Experimental results clearly show novel dielectric behavior of a linear increase in a log ionic conductivity versus temperature in the pre-melt/solid-state transition regions. We have differentiated the solids which show the conductivity variations in pre-melt from those which do not. Isothermal dielectric analysis was used to study the cause of this variation in solids which yielded the measure of behavior, i.e., the polarization time property. We have also studied the effect of various experimental factors (e.g., moisture and purity) on the results. Correlating dielectric with calorimetric analyses gave us a better understanding of solid-state properties. Calorimetric analysis was used to assure that the observed variations in the solid-state properties are not due to moisture or impurities present in the sample. The ASTM E698 “purity method” was employed to verify the purity of the chemicals. Activation energies were calculated based on Arrhenius behavior to better interpret the solid-state properties. As the different chemicals were heat–cool cycled they were more amorphous, as evidenced by the decreasing activation energy for charge transfer with an increasing amorphous content.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号