首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
化学   48篇
数学   3篇
物理学   22篇
  2022年   2篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   7篇
  1995年   2篇
  1993年   4篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有73条查询结果,搜索用时 17 毫秒
1.
2.
3.
4.
5.
6.
The attempt to prepare hitherto unknown homopolyatomic cations of sulfur by the reaction of elemental sulfur with blue S8(AsF6)2 in liquid SO2/SO2ClF, led to red (in transmitted light) crystals identified crystallographically as S8(AsF6)2. The X-ray structure of this salt was redetermined with improved resolution and corrected for librational motion: monoclinic, space group P2(1)/c (No. 14), Z = 8, a = 14.986(2) A, b = 13.396(2) A, c = 16.351(2) A, beta = 108.12(1) degrees. The gas phase structures of E8(2+) and neutral E8 (E = S, Se) were examined by ab initio methods (B3PW91, MPW1PW91) leading to delta fH theta[S8(2+), g] = 2151 kJ/mol and delta fH theta[Se8(2+), g] = 2071 kJ/mol. The observed solid state structures of S8(2+) and Se8(2+) with the unusually long transannular bonds of 2.8-2.9 A were reproduced computationally for the first time, and the E8(2+) dications were shown to be unstable toward all stoichiometrically possible dissociation products En+ and/or E4(2+) [n = 2-7, exothermic by 21-207 kJ/mol (E = S), 6-151 kJ/mol (E = Se)]. Lattice potential energies of the hexafluoroarsenate salts of the latter cations were estimated showing that S8(AsF6)2 [Se8(AsF6)2] is lattice stabilized in the solid state relative to the corresponding AsF6- salts of the stoichiometrically possible dissociation products by at least 116 [204] kJ/mol. The fluoride ion affinity of AsF5(g) was calculated to be 430.5 +/- 5.5 kJ/mol [average B3PW91 and MPW1PW91 with the 6-311 + G(3df) basis set]. The experimental and calculated FT-Raman spectra of E8(AsF6)2 are in good agreement and show the presence of a cross ring vibration with an experimental (calculated, scaled) stretching frequency of 282 (292) cm-1 for S8(2+) and 130 (133) cm-1 for Se8(2+). An atoms in molecules analysis (AIM) of E8(2+) (E = S, Se) gave eight bond critical points between ring atoms and a ninth transannular (E3-E7) bond critical point, as well as three ring and one cage critical points. The cage bonding was supported by a natural bond orbital (NBO) analysis which showed, in addition to the E8 sigma-bonded framework, weak pi bonding around the ring as well as numerous other weak interactions, the strongest of which is the weak transannular E3-E7 [2.86 A (S8(2+), 2.91 A (Se8(2+)] bond. The positive charge is delocalized over all atoms, decreasing the Coulombic repulsion between positively charged atoms relative to that in the less stable S8-like exo-exo E8(2+) isomer. The overall geometry was accounted for by the Wade-Mingos rules, further supporting the case for cage bonding. The bonding in Te8(2+) is similar, but with a stronger transannular E3-E7 (E = Te) bonding. The bonding in E8(2+) (E = S, Se, Te) can also be understood in terms of a sigma-bonded E8 framework with additional bonding and charge delocalization occurring by a combination of transannular n pi *-n pi * (n = 3, 4, 5), and np2-->n sigma * bonding. The classically bonded S8(2+) (Se8(2+) dication containing a short transannular S(+)-S+ (Se(+)-Se+) bond of 2.20 (2.57) A is 29 (6) kJ/mol higher in energy than the observed structure in which the positive charge is delocalized over all eight chalcogen atoms.  相似文献   
7.
High levels of diastereoselection with respect to chirality-at-metal are achieved at equilibrium for complexes containing a new and available range of diazaallyl ligands.  相似文献   
8.
9.
The ligand field molecular mechanics method has been extended to treat η(6)-arene ligands coordinated to a ruthenium(II) centre by employing a dummy atom located at the centroid of the arene ring and distributing the forces on the dummy to the arene carbon atoms. Angular overlap model parameters based on orbital energies derived from Kohn-Sham density functional theory (KS-DFT) calculations show that, relative to the Ru-dummy vector, the arene behaves as a very strong π donor and weak σ donor. Based on KS-DFT geometries, partial atomic charges and potential energy scans for a series of homoleptic and half sandwich complexes spanning arene, am(m)ine, imine, pyridyl, hydride and chloride ligands, a new LFMM force field has been developed which accurately reproduces the KS-DFT data. This FF was validated against 47 half-sandwich complexes obtained from the Cambridge Structural Database which, after minor corrections to account for the systematic errors between our chosen functional (BP86) and the experimental structures, yields a 'structurally tuned' FF where 93% of the Ru-L contacts are reproduced to 0.05 ? or better and all bar two bond lengths are within 0.1 ? of experiment. Over half the systems have non-hydrogen-atom rmsds of less than 0.5 ?. Larger differences are usually due to rotation of the arene moiety which is shown by ligand field molecular dynamics (LFMD) simulations to be an inherently low-energy process. Comparisons between LFMD and Car-Parrinello MD for [Ru(p-cymene)(ethylenediamine)Cl](+)show that LFMD is equally accurate but much faster enabling modelling of dynamic properties which occur on a timescale beyond the scope of CPMD.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号