首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   6篇
化学   44篇
  2015年   5篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2008年   4篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有44条查询结果,搜索用时 14 毫秒
1.
Novel bifunctional conjugates 1-3, with varying polymethylene spacer groups, were synthesized, and their DNA interactions have been investigated by various biophysical techniques. The absorption spectra of these systems showed bands in the regions of 300-375 and 375-475 nm, corresponding to acridine and acridinium chromophores, respectively. When compared to 1 (Phi(f) = 0.25), bifunctional derivatives 2 and 3 exhibited quantitative fluorescence yields (Phi(f) = 0.91 and 0.98) and long lifetimes (tau = 38.9 and 33.2 ns). The significant quenching of fluorescence and lifetimes observed in the case of 1 is attributed to intramolecular electron transfer from the excited state of the acridine chromophore to the acridinium moiety. DNA-binding studies through spectroscopic investigations, viscosity, and thermal denaturation temperature measurements indicate that these systems interact with DNA preferentially through intercalation of the acridinium chromophore and exhibit significant DNA association constants (K(DNA) = 10(5)-10(7) M(-1)). Compound 1 exhibits chromophore-selective electron-transfer reactions and DNA binding, wherein only the acridinium moiety of 1 interacts with DNA, whereas optical properties of the acridine chromophore remain unperturbed. Among bifunctional derivatives 2 and 3, the former undergoes DNA mono-intercalation, whereas the latter exhibits bis-intercalation; however both of them interact through mono-intercalation at higher ionic strength. Results of these investigations demonstrate that these novel water-soluble systems, which exhibit quantitative fluorescence yields, chromophore-selective electron transfer, and DNA intercalation, can have potential use as probes in biological applications.  相似文献   
2.
A new series of photoactivated DNA oxidizing agents in which an acridine moiety is covalently linked to viologen by an alkylidene spacer was synthesized, and their photophysical properties and interactions with DNA, including DNA cleaving properties, were investigated. The fluorescence quantum yields of the viologen-linked acridines were found to be lower than that of the model compound 9-methylacridine (MA). The changes in free energy for the electron transfer reactions were found to be favorable, and the fluorescence quenching observed in these systems is explained by an electron transfer mechanism. Intramolecular electron transfer rate constants were calculated from the observed fluorescence quantum yields and singlet lifetime of MA and are in the range from 1.06x10(10) s(-1) for 1 a (n=1) to 6x10(8) s(-1) for 1 c (n=11), that is, the rate decreases with increasing spacer length. Nanosecond laser flash photolysis of these systems in aqueous solutions showed no transient absorption, but in the presence of guanosine or calf thymus DNA, transient absorption due to the reduced viologen radical cation was observed. Studies on DNA binding demonstrated that the viologen-linked acridines bind effectively to DNA in both intercalative and electrostatic modes. Results of PM2 DNA cleavage studies indicate that, on photoexcitation, these molecules induce DNA damage that is sensitive to formamidopyrimidine DNA glycosylase. These viologen-linked acridines are quite stable in aqueous solutions and oxidize DNA efficiently and hence can be useful as photoactivated DNA-cleaving agents which function purely by the co-sensitization mechanism.  相似文献   
3.
A few novel anthracene-based cyclophanes CP-1 , CP-2 and CP-3 were synthesized and their interactions with DNA were investigated employing photophysical and biophysical techniques. In methanol and acetonitrile, these systems exhibited optical properties characteristic of the anthracene chromophore. However, in the aqueous medium, the symmetric cyclophane CP-1 showed a dual emission having λmax at 430 and 550 nm, due to the monomer and excimer, respectively. In contrast, the cyclophanes CP-2 and CP-3 in the aqueous medium showed structured anthracene absorption and emission spectra similar to those obtained in methanol and acetonitrile. DNA binding studies indicate that CP-1 undergoes efficient nonclassical partial intercalative interactions with DNA resulting in the exclusive formation of a sandwich-type excimer having enhanced emission intensity and lifetimes. The cyclophane CP-2 having one anthracene moiety exhibited nonclassical intercalative binding with DNA, albeit with less efficiency compared with CP-1 . In contrast, CP-3 , having sterically bulky viologen bridging group showed DNA electrostatic as well as groove binding interactions. These results demonstrate that the nature of the bridging unit plays an important role in the binding mode of the cyclophanes with DNA and in the formation of the novel sandwich-type excimer.  相似文献   
4.
Adarsh N  Avirah RR  Ramaiah D 《Organic letters》2010,12(24):5720-5723
Novel aza-BODIPY derivatives substituted with heavy atoms such as bromine and iodine were synthesized, and their triplet and singlet oxygen generation efficiencies have been investigated. These derivatives showed absorption in the NIR region with high molar extinction coefficients. The dye substituted with four iodine atoms showed yields of Φ(T) = 0.78 and Φ((1)O(2)) = 0.70, which are the highest values so far obtained for the aza-BODIPY derivatives.  相似文献   
5.
6.
[reaction: see text] Synthesis of new quinaldine-based squaraine dyes linked to cellular recognition elements that exhibit near-infrared absorption (>740 nm) are described. Both product analysis and theoretical calculations substantiate the interesting electronic effects of various substituents in the dye formation reaction. These results are useful in the synthesis of symmetrical and unsymmetrical squaraine dyes that can have potential biological and photodynamic therapeutical applications.  相似文献   
7.
Upon exposure to UV light, the disubstituted dibenzobarrelene derivative 1a turns green in the solid phase and reverts back to its original pale-yellow color within several hours in the dark. The lifetime of the colored species in degassed benzene at room temperature is 37 +/- 2 s (Ea for decoloration is 14.5 +/- 0.7 kcal mol-1 and log A is 8.92 +/- 0.5 s-1) and highly sensitive to molecular oxygen; the Stern-Volmer quenching constant is 6.9 +/- 0.2 x 108 M-1 s-1. Similarly, the disubstituted dibenzobarrelenes 1b and 1c exhibited pink coloration when exposed to UV light in the solid phase. On the basis of combined experimental and theoretical evidence, it is proposed that upon photoexcitation the excited singlet state of 1a undergoes rapid intersystem crossing to its triplet state, followed by intramolecular delta-H abstraction, to yield the triplet biradical intermediate (3)2. Upon prolonged irradiation, 2 undergoes cyclization to the alcohol 3, which affords the enone 4 as the final photoproduct. The delta-H abstraction on the triplet-state potential energy surface, calculated at the B3LYP/6-31G* level of density functional theory (DFT), has an activation energy of 18.5 kcal/mol. Further, the absorption spectrum of the triplet biradical (3)2, obtained from time-dependent DFT calculations, displays an intense absorption maximum at 670 nm, which is in good agreement with the observed absorption peak at 700 nm. The molecular-orbital analysis of the triplet diradical (3)2 suggests that its long-wavelength absorption involves the transition of the unpaired electron from the comparatively localized benzyl-type HOMO to the extensively conjugated benzoyl-type LUMO. The present experimental and theoretical results strongly support the intervention of a long-lived triplet biradical (3)2 in the photochromism of appropriately substituted dibenzobarrelenes.  相似文献   
8.
The 1,3-dipolar cycloaddition of bis(phenylazo)stilbene with activated ethene and ethyne derivatives and the subsequent rearrangement of the cycloadducts have been studied using model compounds at the B3LYP/6-31G(d) level of density functional theory (DFT). From the structural and electronic features, a five-membered zwitterionic ring system 9 (1,2,3-triazolium-1-imide system) formed from bis(phenylazo)ethylene is confirmed as the active 1,3-dipole species in the reaction. Formation of the 1,3-dipolar cycloadduct from the alkyne derivative is found to be 26.0 kcal/mol exergonic, and it requires an activation free energy of 19.4 kcal/mol. The 1,3-cycloadduct formed in the reaction undergoes a very facile migration of a nitrogen-bearing fragment, passing through a zwitterionic transition state. A small activation free energy of 8.2 kcal/mol is observed for this step of the reaction, and it is 19.6 kcal/mol exergonic. Further activation of the newly formed rearranged product is possible under elevated temperatures, again passing through a zwitterionic transition state and resulting in the formation of 2,5-dihydro-1,2,3-triazine derivatives. Such derivatives have been recently reported by Butler et al. (J. Org. Chem. 2006, 71, 5679). The charge separation in 9 and the zwitterionic transition states are stabilized through the pi-system of the phenyl rings and the carbonyl groups. Similar structural, electronic, and mechanistic features are obtained for the reaction of 9 with the ethylenic dipolarophile acrylonitrile. Molecular electrostatic potential analyses of the 1,3-dipole and the zwitterionic transitions states are found to be very useful for characterizing their electron delocalization features. The solvation effects can enhance the feasibility of these reactions as they stabilize the zwitterionic transition states to a great extent.  相似文献   
9.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   
10.
With the objective of developing near-infrared fluorescence probes for biological applications, a few squaraine dyes 3a-d, containing amphiphilic substituents, were synthesized and their photophysical properties have been investigated in the presence and absence of the organized media. These dyes exhibited absorption in the range 630-650 nm, with significant absorption coefficients (epsilon = 1-3 x 10(5) M(-1) cm(-1)) in the aqueous medium. The fluorescence spectra of these dyes showed emission maximum from 660 to 675 nm, depending on the nature of substituents. The fluorescence quantum yields were in the range from 0.15 to 0.21 in ethanol, but 10 times lower values were observed (phi(f) = 0.01-0.02) in the aqueous medium. In the presence of micelles such as cetyltrimethylammonium bromide, sodium dodecyl sulfate, and Triton X-100, these dyes showed negligible changes in their absorption properties, whereas a significant enhancement (5-10-folds) in their fluorescence yields was observed. Picosecond time-resolved studies indicated that these dyes show single-exponential decay in ethanol and ethanol-water mixtures; however, they exhibit biexponential decay with longer lifetimes in the presence of the micellar media. The results indicate that these novel amphiphilic squaraine dyes 3a-d, which exhibit favorable photophysical properties, good solubility in the aqueous medium, and interact efficiently with micelles, can have potential biological applications as near-infrared fluorescence sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号