首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
化学   13篇
力学   4篇
数学   3篇
物理学   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
This work reports the study of the effect of chemical functionalization of carbon nanotubes on their dispersion in poly(lactic acid). The nanotubes were functionalized by the 1,3‐dipolar cycloaddition reaction, generating pyrrolidine groups at the nanotube surface. Further reaction of the pyrrolidine groups with poly(lactic acid) was studied in solution and in the polymer melt. The former involved refluxing the nanotubes in a dimethylformamide/polymer solution; the latter was carried out by direct melt mixing in a microcompounder. The carbon nanotubes collected after each process were characterized by thermogravimetry and by X‐ray photoelectron spectroscopy, showing evidence of polymer bonded to the nanotube surface only when the reaction was carried out in the polymer melt. The composites with polymer modified nanotubes present smaller average agglomerate area and a narrower agglomerate area distribution. In addition, they show improved tensile properties at low CNT concentration and present lower electrical resistivity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3740–3750  相似文献   
2.
Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood.  相似文献   
3.
When a time harmonic electromagnetic wave impinges on a slaba certain portion of the wave creates heat within the slab throughdipolar and ohmic heating. The electrical and thermal propertiesof the material dictate the dynamical nature of the heatingprocess, as well as the steady-state temperature profile. Thematerial considered here is a slab of fluid. We consider thecase where the fluid is bounded by thin rigid layers of transparentmaterial. The steady-state heating profile governs the typesof convective motions that can occur and also affects the stabilitycharacteristics of temperature, pressure and velocity perturbationsintroduced in the slab. The main objective here is to examinesuch stability characteristics, initially in the linear regime.Both rigid-rigid and rigid-free configurations are considered.  相似文献   
4.
The most promising method capable of providing accurate measurements of the first and second normal-stress differences in shear flows at shear rates typical of polymer processing is the so-called hole-pressure method, but its use has not been as widespread as would be expected, namely due to the experimental difficulties associated with performing such experiments accurately. In this work, we use a small-scale modular slit die to assess the practical utility of the method for in-line monitoring of polymer melt flow. We provide a quantitative analysis of intrinsic error sources and use state-of-the-art data acquisition tools to minimize errors associated with pressure transducers. Our results demonstrate that the method can be used to accurately measure the viscosity and first normal-stress difference in melts but probably not the second normal-stress difference because the intrinsic errors are too high, even when the influence of all the potential error sources is minimized or eliminated.  相似文献   
5.
This work discusses robustness assessment during multi-objective optimization with a Multi-Objective Evolutionary Algorithm (MOEA) using a combination of two types of robustness measures. Expectation quantifies simultaneously fitness and robustness, while variance assesses the deviation of the original fitness in the neighborhood of the solution. Possible equations for each type are assessed via application to several benchmark problems and the selection of the most adequate is carried out. Diverse combinations of expectation and variance measures are then linked to a specific MOEA proposed by the authors, their selection being done on the basis of the results produced for various multi-objective benchmark problems. Finally, the combination preferred plus the same MOEA are used successfully to obtain the fittest and most robust Pareto optimal frontiers for a few more complex multi-criteria optimization problems.  相似文献   
6.
In this work, the effect of chitosan blending on the thermal properties, nanoscopic structure and swelling behavior of ureasil–polyethylene oxide (U-PEO) hybrid materials was examined. Materials were prepared by the sol–gel route using acid catalysts, and the effect of acid (hydrochloric or acetic acid) was also examined. Differential scanning calorimetry results showed that chitosan addition did not provoke appreciable changes in the thermal behavior of the U-PEO. Thermogravimetric curves did not show changes in thermal stability resulting from chitosan blending but were depended on the type of acid catalyst. Small-angle X-ray scattering and nuclear magnetic resonance spectroscopy techniques were used for studying nanoscopic and inner structures, showing the existence of two structural levels and differences in polycondensation degrees. All samples presented fast water uptake with the same initial swelling rate and with a non-Fickian or anomalous transport mechanism. Swelling degree was higher in hybrids prepared with HCl, which possessed less branched siloxane cross-link nodes species, therefore lower polycondensation degree. Also, the magnitude of swelling decreased for hybrids blended with chitosan, which provides a means of tailoring the water uptake by the ureasil–PEO hybrid and to potentiate the control of the release profile of drugs incorporated in these materials.  相似文献   
7.
The physico‐chemical phenomena developing along the screw axis of a twin‐screw extruder during the grafting of maleic anhydride (MA) onto polyolefins [polyethylene (PE), ethylene–propylene rubber (EPM), and polypropylene (PP)] were investigated. For this purpose, sampling devices located along the extruder barrel were used to collect polymer samples that were subsequently characterized to follow the degrees of grafting and crosslinking or degradation. A similar evolution of MA grafting was observed regardless of the polyolefin type or MA and peroxide concentration when grafting was performed under identical conditions, that is, the same peroxide type and set temperature. A correlation between the MA grafting and the calculated peroxide decomposition was established. Chemical reactions occurred along the extruder axis until the peroxide was fully converted. More detailed quantitative measurements of the peroxide decomposition and MA grafting would allow the development of accurate process models. The final MA content depended on the polyolefin composition (PE > EPM ≫ PP). As expected for PE, crosslinking occurred in addition to grafting, but after a certain residence time, the PE network degraded. The PP viscosity reduction after MA grafting was due to the conversion of tertiary PP radicals into primary PP radicals after grafting. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3919–3932, 2000  相似文献   
8.
In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra‐high‐performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high‐density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20–60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC‐MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r2 = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p <0.05) compared with lowpolyphenolic content olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
Processing at the highest possible throughput rates is essential from an economical point of view. However, various flow instabilities and extrudate distortions like sharkskin, stick slip, and gross melt fracture (GMF) may limit the production rate of high-quality products. Predicting the process conditions leading to the occurrence of rheological instabilities is the key for improving product quality, process control, and optimization. Large-amplitude oscillatory shear (LAOS) and FT-rheology were used to quantify the non-linear rheological behavior and instabilities of a series of well-characterized commercial polyethylene (PE). From the latter, we derive the critical non-linearity parameter, F 0,c, which corresponds to the normalized intensity of the third harmonic at the critical strain amplitude, γ 0,C (defined by the appearance of the second harmonic), normalized by γ 0,C . The F 0,c is correlated with the high molecular mass fraction of the polymers and with the Deborah numbers. Linear rheological parameters and molecular structures were related to F 0,c. An experimental correlation between F 0,c of commercial PE melts and pressure fluctuations associated with flow instabilities (sharkskin) was established both for capillary rheometry and extrusion.  相似文献   
10.
A simple device was recently developed for fast sampling (within a few seconds) of representative melt samples (about 2 g) on a running extruder. An array of such devices has been mounted on a twin‐screw extruder. The goal of this study was to de‐black‐box reactive processing of polymers by studying some typical examples. ‐ Processing of polyolefins in the presence of peroxides: when the polymer is molten and the melt temperature is sufficiently high branching/cross‐linking of PE and degradation of PP occurs; the conversion follows a convex profile along the screw axis, which profile is similar to the exponential profile calculated for peroxide decomposition. ‐ Free‐radical grafting of maleic anhydride (MA) onto polyolefins: MA grafting onto PE and PP also follows a convex profile with branching/cross‐linking as parallel side reaction for PE and degradation for PP; for PE degradation of the formed grafted/cross‐linked gel is observed at the end of the extruder. ‐ Reactive blending of PA‐6 with EPM‐g‐MA: within a few seconds the in‐situ compatibilization reaction, resulting in PA‐6/EPM graft copolymers, is completed and the degree of rubber dispersion has changed from the mm to the sub‐μm range, regardless of the MA content of EPM‐g‐MA and the EPM‐g‐MA content of the blend; PA degradation occurs along the whole extruder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号