首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The photobiology of mouse melanocyte lines with different pigment genotypes was studied by measuring colony-forming ability after irradiation. The cell lines were wild-type black (melan-a) and the mutants brown (melan-b) and albino (melan-c). Four lamps emitting various UV wavelengths were used. These were germicidal (UVC, 200–280 Dm), 82.3% output at 254 nm, TL01 (UVB, 280–320 nm), 64.2% at 310–311 nm, FS20, broadband with peak output at 312 nm and Alisun-S (UVA, 320–400 nm), broadband with peak output at 350–354 nm. Appropriate filtration reduced the contaminating UVC to nonlethal levels for the longer waverange lamps. Wild-type melan-a was resistant to UVC and UVA compared to the other two cell lines, but the differences were small. The melan-c cell line was more resistant to UVB and markedly more resistant to FS20 than the pigmented lines. With the exception of FS20 responses, melan-b was more sensitive than melan-a to killing by the various UV lamps. There were more pyrimidine dimers (cyclobutane dimers and 6–4 photoproducts) produced in melan-a than in melan-c cells by UVC, UVB and FS20 lamps. Unlike melan-c, melan-a and melan-b showed a strong free radical signal of melanin character with a detectable contribution of pheomelanin-like centers. The contribution of pheome-lanin was higher in melan-b than in melan-a, while the total melanin content in these two cell lines was comparable. The abundant melanin granules of wild-type melan-a melanocytes were well melanized and ellipsoidal, whereas those of melan-b melanocytes tended to be spherical. In the albino line (melan-c) the melanocytes contained only early-stage melanosomes, all of which were devoid of melanin. The results indicate that pigment does not protect against direct effect DNA damage in the form of pyrimidine dimers nor does it necessarily protect against cell death. High pigment content is not very protective against killing by UVC and UVA, and it may photosensitize in UVB the very wavelength range that is of greatest concern with respect to the rising incidence in skin cancer, especially melanoma. It is clear from these studies that, in pigment cells, monochromatic results cannot predict polychromatic responses and that cell death from solar irradiations is a complex phenomenon that depends on more than DNA damage.  相似文献   
2.
A diffusible multitherapy resistance factor (MTRF) is produced by Cloudman S91 melanoma cells in vitro. The MTRF decreases sensitivity of the target cell line, S91/amel, to γ-irradiation, UVC (200–280nm) and mitomycin C (MMC). In the present study, we demonstrate that MTRF also increases the survival of S91/amel after exposure to actinomycin D (AMD) and vinblastine (VBL). The MTRF is thus effective when target cells have been exposed to five genotoxic agents that act by different mechanisms. It does not alter the response to the same five agents of the S91/13 producer cells, which are presumably saturated with the factor. The factor has no effect on the survival of S91/amel cells that have been exposed to lethal doses of near monochromatic UVB (280–320nm) or UVA (320–400nm) or to polychromatic FS20 lamps. The lack of effectiveness of MTRF after cells have been exposed to near (300–400nm) UV radiation indicates that in this wavelength range, S91 melanoma cells are killed by mechanisms that are different from the lethal effects of the five genotoxic agents (γ-irradiation, UVC, MMC, AMD and VBL) to which the target cells demonstrate a response.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号