首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8437篇
  免费   343篇
  国内免费   107篇
化学   5989篇
晶体学   43篇
力学   241篇
综合类   10篇
数学   1020篇
物理学   1584篇
  2022年   69篇
  2021年   103篇
  2020年   121篇
  2019年   118篇
  2018年   100篇
  2017年   80篇
  2016年   181篇
  2015年   180篇
  2014年   268篇
  2013年   427篇
  2012年   498篇
  2011年   576篇
  2010年   327篇
  2009年   261篇
  2008年   446篇
  2007年   462篇
  2006年   470篇
  2005年   444篇
  2004年   364篇
  2003年   311篇
  2002年   301篇
  2001年   162篇
  2000年   192篇
  1999年   103篇
  1998年   80篇
  1997年   88篇
  1996年   104篇
  1995年   93篇
  1994年   93篇
  1993年   95篇
  1992年   85篇
  1991年   64篇
  1990年   63篇
  1989年   53篇
  1988年   52篇
  1987年   56篇
  1986年   53篇
  1985年   88篇
  1984年   81篇
  1983年   55篇
  1982年   79篇
  1981年   73篇
  1980年   75篇
  1979年   104篇
  1978年   83篇
  1977年   71篇
  1976年   70篇
  1975年   48篇
  1974年   50篇
  1973年   43篇
排序方式: 共有8887条查询结果,搜索用时 312 毫秒
1.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
2.
A class of acceptor–donor–acceptor chromophoric small-molecule non-fullerene acceptors, 1–4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from −3.65 to −3.72 eV) and relatively high electron mobility (7.49 × 10−4 cm2 V−1 s−1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.

Boron(iii) β-diketonates have been demonstrated to serve as multi-functional materials in NFA-based OPVs and organic resistive memories.  相似文献   
3.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
4.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
5.
The nonlinear frequency response analysis (NFRA) can be seen as an extension of electrochemical impedance spectroscopy. NFRA gives a full and detailed representation of the system response and can establish a connection between model parameters and the experimentally observed phenomena. In this article, different theoretical NFRA approaches and the most recent application examples are discussed. A simple electrochemical example is used to showcase the benefits and disadvantages of analyzing the system response by using different approaches. In addition, it was shown how to extract experimental harmonic values and analyze them.  相似文献   
6.
7.
8.
A short regio- and stereoselective synthesis of two carbocyclic 3′-deoxynucleoside analogues is described, the key step of which consists in the photosensitized addition of MeOH to a cyclopent-2-enone derivative. As in both cases functional groups capable to react with each other are present in the same molecule, the synthetic compounds can form polymers similar to oligonucleotides.  相似文献   
9.
10.
Summary Considered here are model equations for weakly nonlinear and dispersive long waves, which feature general forms of dispersion and pure power nonlinearity. Two variants of such equations are introduced, one of Korteweg-de Vries type and one of regularized long-wave type. It is proven that solutions of the pure initial-value problem for these two types of model equations are the same, to within the order of accuracy attributable to either, on the long time scale during which nonlinear and dispersive effects may accumulate to make an order-one relative difference to the wave profiles.This research was supported in part by the National Science Foundation. A considerable portion of the project was completed while the first author was resident at the Institute for Mathematics and Its Applications, University of Minnesota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号