首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We introduce a hybrid photonic surface plasmon ring resonator which consists of a silicon nitride (Si3N4) dielectric traveling-wave ring resonator vertically coupled to a thin layer of metallic strip ring resonator made of Silver (Ag) on top. The cladding is assumed to be porous alumina on top of the metal layer, which provides more surface area for the adsorption of target molecules and their efficient interaction with the surface plasmon wave excited at the metal-cladding interface. Simulations show that this hybrid structure has a large refractive index sensitivity due to the excitation of surface plasmon waves and also a relatively narrow resonance linewidth due to the large quality factor of the photonic ring resonator. The Finite Element method is used to systematically design the hybrid structure and to investigate the performance of the hybrid resonator as a refractive index sensor. The proposed structure is very compact and can be implemented on a chip in an integrated platform. Thus, it can be used for lab-on-a-chip sensing applications and is capable of being spectrally and spatially multiplexed for muti-analyte sensing.  相似文献   
2.
Silver nanocubes (AgNCs), 60 nm, have four extinction surface plasmon resonance (SPR) peaks. The finite difference time domain (FDTD) simulation method is used to assign the absorption and scattering peaks and also to calculate the plasmon field intensity for AgNCs. Because AgNCs have a highly symmetric cubic shape, there is a uniform distribution of the plasmon field around them, and they are thus sensitive to asymmetric dielectric perturbations. When the dielectric medium around a nanoparticle is changed anisotropically, either by placing the particle on a substrate or by coating it asymmetrically with a solvent, the plasmon field is distorted, and the plasmonic absorption and scattering spectra could shift differently. For the 60 nm AgNC, we found that the scattering resonance peak shifted more than the absorption peak. This changes the extinction bandwidth of these overlapping absorption and scattering bands, and consequently the figure of merit of the nanoparticle, as a localized SPR sensor, no longer has a constant value.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号