首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   24篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   3篇
  1992年   3篇
  1990年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The alkyl N-(diphenylmethylene)-α,β-dehydroamino acids 1 have been submitted to 1,3-dipolar cycloadditions with nitrile oxides. The reactivity of these compounds depends on the type and on the stereochemistry of the β-substituents. With the unsubstituted terms 1a,b the reaction occurs on the C,C double bond, providing a good method for the synthesis of the 4,5-dihydroisoxazole derivatives 3a,b,c and for the gem-functionalized 4,5-dihydroisoxazoles amino carboxylic ester 5. The β-substituted compounds 1c,d,e , inert to 1,1-dimethylethylnitrile oxide, undergo the reaction to the N,C double bond, thus giving with 2a,b the 4,5-dihydro-1,2,4-oxadiazole derivatives 4. All the reactions occur with high site- and regioselectivity.  相似文献   
2.
A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite–polyurethane composite electrode with SBA‐15 silica organofunctionalized with 2‐benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ?1.1 V vs. SCE where they complex with 2‐benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved.  相似文献   
3.
This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L(-1) for serotonin, to the best of our knowledge one of the lowest values reported in the literature.  相似文献   
4.
Journal of Solid State Electrochemistry - In recent years, the use of prescribed and non-prescribed drugs has increased. Therefore, advances in new technologies and sensors for detecting molecules...  相似文献   
5.
The ethylaluminum dichloride catalyzed Michael-type addition of indoles 1a-h to the N-(diphenylmethylene)-α,β-didehydroamino acid esters 2a-c allows a new synthesis of β-methyltryptophanes 41,m and a new route for 1,1-diphenyl-3-carbalkoxy-1,2,3,4-tetrahydro-β-carbolines 5a-m.  相似文献   
6.
7.
A sensitive way to determine levofloxacin using a sensor based on vertical aligned carbon nanotubes is described. The morphology and the electrochemical performance of the electrodes were characterised by atomic force microscopy, cyclic voltammetry and square wave voltammetry. A scan‐rate study and electrochemical impedance spectroscopy showed that the levofloxacin oxidation product is adsorbed on the electrode surface. Differential pulse voltammetry in phosphate‐buffer solution allowed the development of a method to determine levofloxacin levels in the range of 1.0–10.0 µmol L?1, with a detection limit of 75.2 nmol L?1. The proposed sensor was successfully applied in the determination of levofloxacin in urine, and the obtained results were in full agreement with those from the HPLC procedure.  相似文献   
8.
Journal of Solid State Electrochemistry - An easily prepared biosensor based on reduced graphene oxide (rGO) and glucose oxidase (GOx) enzyme was developed to monitor the enzymatic hydrolysis...  相似文献   
9.
Hydrogels are three-dimensional, hydrophilic, polymer networks that are able to imbibe large amounts of water or biological fluids, while maintaining their dimensional stability. The polymer binding might be achieved by chemical or physical interactions. Physical crosslinking of a polymer to form its hydrogel, might be accomplished either by casting-solvent evaporation (SC) method or by freeze–thaw (FT) technique. The physical hydrogels, especially the ones based on natural biopolymers, like polysaccharides, are being widely used in industry and medicine due to their favourable properties: biocompatibility; biodegradability; low toxicity and eco-friendly characteristics. Polysaccharides, like chitosan (CH) and (hydroxypropyl)methyl cellulose (HPMC) have gained great attention due to its stimuli sensitive properties: pH and temperature responsiveness, respectively. Thus, within this work we have developed physically crosslinked CH:HPMC hydrogel films, using both SC and FT techniques. The attained CH:HPMC membranes were evaluated in terms of their swelling, thermal (low critical solution temperature—LCST), structural (attenuated total reflectance Fourier transform infrared spectroscopy) and morphological (scanning electron microscopy and atomic force microscopy) properties. According to these results, the developed membranes exhibit a good miscibility between the two component biopolymers. Moreover, the CH:HPMC membranes exhibit a high swelling capacity (SWFT = 1,172 and SWSC = 7,323), a low surface roughness (Sq = 5.6–9.5 nm) and an elevated LCST (LCST = 85.2–87.5 °C). The stimuli sensitive behaviour makes hydrogels appealing for the design of smart devices applicable in a variety of technological fields. In our particular case, we envisage the application of such materials as active substances (moisturisers, antiperspirants and scents) delivers, into textile substrates in a controlled manner.  相似文献   
10.

This paper describes the surface modification of glassy carbon (GC) electrodes with a bamboo-based renewable carbon (RC) before and after an acid functionalization procedure with a sulfonitric solution (1:3 HNO3/H2SO4). The morphology and structural characterization indicate an increase of functional groups in the functionalized renewable carbon (RCF) surface. The enhanced electroanalytical properties of RC and RCF were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in two different setups, in the presence of the redox couple ([Fe(CN)6]3−/4−) and escitalopram (EST). The results revealed an enhancement for the electrochemical responses of both inorganic and organic compounds in the electrolyte. Therefore, the use of new carbon-based materials such as renewable carbon for development of electrochemical sensors brings a fresh approach to low-cost device development.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号