首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2021年   1篇
  2014年   4篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
New vapor-liquid equilibria (VLE) data at 323.15, 333.15, 343.15, and 353.15 K and pressures up to 112.9 bar are reported for the carbon dioxide + 2-methyl-2-propanol system. The experimental method used in this work was a static analytical method with liquid and vapor phases sampling using a rapid online sampler injector (ROLSI?) coupled to a gas chromatograph (GC) for analysis. Measured VLE data and literature data for carbon dioxide + 2-methyl-2-propanol system were modeled with the Soave-Redlich-Kwong (SRK) cubic equation of state with classical van der Waals (two-parameter conventional mixing rule, 2PCMR) mixing rules. A single set of interaction parameters that lead to a correct phase behavior was used in this work to model the new VLE data and critical points of the mixtures in a wide range of temperature and pressure. The SRK prediction results were compared to the new data measured in this study and to available literature data.
  相似文献   
2.
Vapor–liquid equilibria (VLE) and vapor–liquid–liquid equilibria (VLLE) data for the carbon dioxide + 1-heptanol system were measured at 293.15, 303.15, 313.15, 333.15 and 353.15 K. Phase behavior measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between 0.58 and 14.02 MPa. The Soave–Redlich–Kwong (SRK)-EOS coupled with Huron–Vidal (HV) mixing rules and a reduced UNIQUAC model, was used in a semi-predictive approach, in order to represent the complex phase behavior (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behavior is qualitatively correct predicted.  相似文献   
3.
4.
The phase behavior of the carbon dioxide + cycloalkane mixtures usually receives low attention, though these systems are important for many industries, e.g. the carbon capture and storage. In this paper calculations results for the carbon dioxide + cyclopentane binary system are presented, based on SRK and PR cubic equations of state with classical van der Waals mixing rules. A single set of binary parameters for each model was proposed to predict the global phase behavior of the system in a wide range of pressure and temperature. Albeit the thermodynamic models used are simple, they are able to represent fairly well the phase behavior of the system analyzed in this paper.
  相似文献   
5.
In recent years we have focused our efforts on investigating various binary mixtures containing carbon dioxide to find the best candidate for CO2 capture and, therefore, for applications in the field of CCS and CCUS technologies. Continuing this project, the present study investigates the phase behavior of three binary systems containing carbon dioxide and different oxygenated compounds. Two thermodynamic models are examined for their ability to predict the phase behavior of these systems. The selected models are the well-known Peng–Robinson (PR) equation of state and the General Equation of State (GEOS), which is a generalization for all cubic equations of state with two, three, and four parameters, coupled with classical van der Waals mixing rules (two-parameter conventional mixing rule, 2PCMR). The carbon dioxide + ethyl acetate, carbon dioxide + 1,4-dioxane, and carbon dioxide + 1,2-dimethoxyethane binary systems were analyzed based on GEOS and PR equation of state models. The modeling approach is entirely predictive. Previously, it was proved that this approach was successful for members of the same homologous series. Unique sets of binary interaction parameters for each equation of state, determined for the carbon dioxide + 2-butanol binary model system, based on k12l12 method, were used to examine the three systems. It was shown that the models predict that CO2 solubility in the three substances increases globally in the order 1,4-dioxane, 1,2-dimethoxyethane, and ethyl acetate. CO2 solubility in 1,2-dimethoxyethane, 1.4-dioxane, and ethyl acetate reduces with increasing temperature for the same pressure, and increases with lowering temperature for the same pressure, indicating a physical dissolving process of CO2 in all three substances. However, CO2 solubility for the carbon dioxide + ether systems (1,4-dioxane, 1,2-dimethoxyethane) is better at low temperatures and pressures, and decreases with increasing pressures, leading to higher critical points for the mixtures. By contrast, the solubility of ethyl acetate in carbon dioxide is less dependent on temperatures and pressures, and the mixture has lower pressures critical points. In other words, the ethers offer better solubilization at low pressures; however, the ester has better overall miscibility in terms of lower critical pressures. Among the binary systems investigated, the 1,2-dimethoxyethane is the best solvent for CO2 absorption.  相似文献   
6.
(Vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) data for the (carbon dioxide + 1-hexanol) system were measured at (293.15, 303.15, 313.15, 333.15, and 353.15) K. Phase behaviour measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between (0.6 and 14.49) MPa. The Soave–Redlich–Kwong (SRK) equation of state (EOS) with classical van der Waals mixing rules (two-parameters conventional mixing rule, 2PCMR), was used in a semi-predictive approach, in order to represent the complex phase behaviour (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behaviour is reasonably well predicted.  相似文献   
7.
Vapor-liquid equilibria (VLE) data for the carbon dioxide + methanol system was measured at 293.15, 298.15, 310.15, and 323.15 K. Phase behavior measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between 4.8 and 95.1 bar. The Soave-Redlich-Kwong (SRK)-EOS coupled with Huron-Vidal (HV) mixing rules and a reduced UNIQUAC model, was used in a semi-predictive approach, in order to represent the phase behavior (critical curve, isothermal VLE) of the system. The topology of the phase behavior of the carbon dioxide + methanol system is satisfactory predicted with the SRK/HV-residual UNIQUAC model.   相似文献   
8.
New refractive indices at 25 °C were measured and are reported here for 19 binary mixtures of pentan-3-one+1,2-dichloroethane, +1,3-dichloropropane, +1,4-dichlorobutane, +trichloromethane, +1,1,1-trichloroethane, +1,1,2,2-tetrachloroethane; cyclopentanone+1-chlorobutane, +1,1,2,2-tetrachloroethane; cyclohexanone+1,1,2,2-tetrachloroethane; 5-chloro-2-pentanone+n-hexane, +toluene, +ethylbenzene; nitromethane+trichloromethane; and nitromethane or nitroethane, +1,2-dichloroethane, +1,3-dichloropropane, +1,4-dichlorobutane. The experimental refractive index deviations from linear mixing behavior have been evaluated and correlated consistently with the 3-parameter Redlich–Kister equation with good results. The molar refraction was also examined for the systems including pentan-3-one, cyclopentanone, cyclohexanone and 5-chloro-2-pentanone for which densities and excess molar volumes are available from previous works. Different theoretical (n, ρ) mixing rules were tested for these systems. The excess Gibbs energy G E and excess enthalpy H E values were considered together with the excess molar volumes V E, excess refractive indexes $ n_{\text{D}}^{\text{E}} $ , molar refraction R and excess molar refractions R E on mixing in the discussion of the influence of the alkyl chain length or of the nature of the second component in the mixture in terms of molecular interactions.  相似文献   
9.
New vapor-liquid equilibria (VLE) data at 333.15, 343.15, and 353.15 K and pressures up to 130.0 bar are reported for the carbon dioxide + 2-methyl-1-propanol (isobutanol) system. The experimental method used in this work was a static analytical method with liquid and vapor phases sampling using a rapid online sampler injector (ROLSITM) coupled to a gas chromatograph (GC) for analysis. Measured VLE data and literature data for carbon dioxide + 2-methyl-1-propanol system were modeled with the Soave-Redlich-Kwong (SRK) cubic equation of state with classical van der Waals (two-parameter conventional mixing rule, 2PCMR) mixing rules. A single set of interaction parameters that lead to a correct phase behavior was used in this work to model the new VLE data and critical points of the mixtures in a wide range of temperature and pressure. The SRK prediction results were compared to the new data measured in this study and to available literature data.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号