首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
化学   39篇
数学   1篇
物理学   15篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Maytansine and its congeners have been isolated from higher plants, mosses and from an Actinomycete, Actinosynnema pretiosum. Many of these compounds are antitumor agents of extraordinary potency, yet phase II clinical trials with maytansine proved disappointing. The chemistry and biology of maytansinoids has been reviewed repeatedly in the late 1970s and early 1980s; the present review covers new developments in this field during the last two decades. These include the use of maytansinoids as "warheads" in tumor-specific antibodies, preliminary metabolism studies, investigations of their biosynthesis at the biochemical and genetic level, and ecological issues related to the occurrence of such typical microbial metabolites in higher plants.  相似文献   
2.
3.
4.
Azepino [3,4,5-cd] indoles 5a and 5b are formed in good yield via the intramolecular photocyclization of N-chloracetyl-3-aminomethylinodles.  相似文献   
5.
The effects of the identity and position of basic residues on peptide dissociation were explored in the positive and negative modes. Low‐energy collision‐induced dissociation (CID) was performed on singly protonated and deprotonated heptapeptides of the type: XAAAAAA, AAAXAAA, AAAAAXA and AAAAAAX, where X is arginine (R), lysine (K) or histidine (H) residues and A is alanine. For [M + H]+, the CID spectra are dominated by cleavages adjacent to the basic residues and the majority of the product ions contain the basic residues. The order of a basic residue's influence on fragmentation of [M + H]+ is arginine > histidine ≈ lysine, which is also the order of decreasing gas‐phase basicity for these amino acids. These results are consistent with the side chains of basic residues being positive ion charge sites and with the more basic arginine residues having a higher retention (i.e. sequestering) of the positive charge. In contrast, for [M ? H]? the identity and position of basic residues has almost no effect on backbone fragmentation. This is consistent with basic residues not being negative mode charge sites. For these peptides, more complete series of backbone fragments, which are important in the sequencing of unknowns, can be found in the negative mode. Spectra at both polarities contain C‐terminal y‐ions, but yn+ has two more hydrogens than the corresponding yn?. Another major difference is the production of the N‐terminal backbone series bn+ in the positive mode and cn? in the negative mode. Thus, comparison of positive and negative ion spectra with an emphasis on searching for pairs of ions that differ by 2 Da (yn+ vs yn?) and by 15 Da (bn+ vs cn?) may be a useful method for determining whether a product ion is generated from the C‐terminal or the N‐terminal end of a peptide. In addition, a characteristic elimination of NH?C?NH from arginine residues is observed for deprotonated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.  相似文献   
7.
The pyrolysis of propane plays an important role in determining the combustion properties of natural gas mixtures and offers insight into the cracking patterns of larger fuels. This work investigates propane pyrolysis behind reflected shock waves with a multiwavelength laser-absorption speciation technique. Nine laser wavelengths, sensitive to key pyrolysis species, were used to measure absorbance time histories during the decomposition of 2% propane in argon between 1022 and 1467 K, 3.7-4.3 atm. Absorbance models were developed at each diagnostic wavelength to interrogate common initial conditions, and time histories of all major species are reported at 1250, 1290, 1330, 1370, and 1410 K. Nearly complete carbon recovery observed at lower temperatures enabled the inference of hydrogen formation from atomic conservation, while decaying carbon recovery at high temperatures suggests the formation of allene and 1-butene. The results show systematically faster pyrolysis than predicted by kinetic modeling and motivate further study into the kinetics of propane pyrolysis.  相似文献   
8.
Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met –H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met – H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu – H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.
Graphical Abstract ?
  相似文献   
9.
The dissociative behavior of peptide amides and free acids was explored using low-energy collision-induced dissociation and high level computational theory. Both positive and negative ion modes were utilized, but the most profound differences were observed for the deprotonated species. Deprotonated peptide amides produce a characteristic c(m-2) (-) product ion (where m is the number of residues in the peptide) that is either absent or in low abundance in the analogous peptide acid spectrum. Peptide acids show an enhanced formation of c(m-3) (-); however, this is not generally as pronounced as c(m-2) (-) production from amides. The most notable occurrence of an amide-specific product ion is for laminin amide (YIGSR-NH(2)) and this case was investigated using several modified peptides. Mechanisms involving 6- and 9-membered ring formation were proposed, and their energetic properties were investigated using G3(MP2) molecular orbital theory calculations. For example, with C-terminal deprotonation of pentaglycine amide, formation of c(m-2) (-) and a 6-membered ring diketopiperazine neutral requires >31.6?kcal/mol, which is 26.1?kcal/mol less than the analogous process involving the peptide acid. The end group specific fragmentation of peptide amides in the negative ion mode may be useful for identifying such groups in proteomic applications.  相似文献   
10.
Representative natural products from the diterpene dilactone, psorospermin and quabalactone classes were protonated, mass-selected and reacted with ethyl vinyl ether in a triple-quadrupole mass spectrometer. Minor differences in the structures of the compounds led to different reactivities toward the reagent, as indicated by the relative abundances of products such as the ethylated and vinylated compounds. Additional information is obtained from the dissociation products formed upon non-reactive, inelastic collisions with the neutral reagent. The daughter spectra have excellent signal: noise ratios and good reproducibility. The results demonstrate that the use of reactive collisions may supplement collision-activated dissociation in chemical analysis of large organic molecules by tandem mass spectrometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号