首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   22篇
物理学   5篇
  2022年   1篇
  2016年   2篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
  1979年   1篇
  1974年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
4-Acetamido-2,4,6-trideoxy-D,L-arabino-hexopyranose, a desmethyl analog of N-acetyl-L-hoTantosamine, the glycosidic residue of the cardenolide HoTarosine A and holantosines C and D, has been prepared via a novel intramolecular rearrangement of an amino alcohol and has been characterized by single-crystal X-ray diffraction.  相似文献   
2.
3.
4.
The internal conversion spectrum following the decay of193Au has been studied in the electron energy region 0.8 to 700 keV, with the use of high-resolution magnetic beta-ray spectrometers. Several not previously reported transitions have been estabblished. Multipolarities and mixing ratios have been deduced fromK/L and subshell intensity ratios, and the majority of the transitions were found to be ofM1 and/orE2 characters. A revised level scheme for193Pt, which consistently accomodates most transitions, has been constructed. Tentative spin-parity values have been assigned to all levels.  相似文献   
5.
6.
Palladium on charcoal-catalysed reaction of methyl vinyl ether with 4-bromonitrobenzene, followed by hydrogenation and subsequent diazotation afforded 4-(2-methoxyethyl) phenol in 47% total yield.  相似文献   
7.
Cytochrome c oxidase (CytcO), the final electron acceptor in the respiratory chain, catalyzes the reduction of O(2) to H(2)O while simultaneously pumping protons across the inner mitochondrial or bacterial membrane to maintain a transmembrane electrochemical gradient that drives, for example, ATP synthesis. In this work mutations that were predicted to alter proton translocation and enzyme activity in preliminary computational studies are characterized with extensive experimental and computational analysis. The mutations were introduced in the D pathway, one of two proton-uptake pathways, in CytcO from Rhodobacter sphaeroides . Serine residues 200 and 201, which are hydrogen-bonded to crystallographically resolved water molecules halfway up the D pathway, were replaced by more bulky hydrophobic residues (Ser200Ile, Ser200Val/Ser201Val, and Ser200Val/Ser201Tyr) to query the effects of changing the local structure on enzyme activity as well as proton uptake, release, and intermediate transitions. In addition, the effects of these mutations on internal proton transfer were investigated by blocking proton uptake at the pathway entrance (Asp132Asn replacement in addition to the above-mentioned mutations). Even though the overall activities of all mutant CytcO's were lowered, both the Ser200Ile and Ser200Val/Ser201Val variants maintained the ability to pump protons. The lowered activities were shown to be due to slowed oxidation kinetics during the P(R) → F and F → O transitions (P(R) is the "peroxy" intermediate formed at the catalytic site upon reaction of the four-electron-reduced CytcO with O(2), F is the oxoferryl intermediate, and O is the fully oxidized CytcO). Furthermore, the P(R) → F transition is shown to be essentially pH independent up to pH 12 (i.e., the apparent pK(a) of Glu286 is increased from 9.4 by at least 3 pK(a) units) in the Ser200Val/Ser201Val mutant. Explicit simulations of proton transport in the mutated enzymes revealed that the solvation dynamics can cause intriguing energetic consequences and hence provide mechanistic insights that would never be detected in static structures or simulations of the system with fixed protonation states (i.e., lacking explicit proton transport). The results are discussed in terms of the proton-pumping mechanism of CytcO.  相似文献   
8.
In 2017, the Swedish Environmental Protection Agency published a report on advanced wastewater treatment for the removal of pharmaceutical residues and stated that advanced treatment should be implemented where it will make the largest difference from an environmental perspective. However, the report also concluded that this need cannot be specified with existing data, but consideration must be made of local conditions. Two considerations are (1) the discharged amount of pharmaceutical into receiving water bodies and (2) the turnover of water in the recipient, where the highest risks are related to recipients with a low water turnover and low dilution. The current project comprised eight different WWTPs distributed throughout the entire County Skåne (Scania) in Sweden, with a population of ca. 1,300,000 persons. In total, 21 of 22 pharmaceuticals were analyzed according to the list proposed by the Swedish Medical Products Agency 2015. The results show that large amounts of pharmaceuticals are released from the WWTPs yearly to Scanian recipients. The total discharge of pharmaceuticals from the eight treatment plants adds up to 71 kg of these 21 substances alone, mainly comprising metoprolol, which is a drug that lowers blood pressure, and the analgesic drug diclofenac. Additionally, carbamazepine, losartan, naproxen and oxazepam were present in significant concentrations. These represented three illnesses that are very common: high blood pressure, inflammation/pain and depression/anxiety. The concentrations were generally in line with previous national Swedish screenings. It was estimated that, when one million cubic meters (1,000,000 m3) of wastewater is discharged, almost 4 kg of the 21 pharmaceuticals is released. The total volume wastewater release by the >90 WWTPs in Scania was estimated to 152,887,000 m3, which corresponded to 590 kg/year. The investigated 21 drugs cover only a small part of many hundred pharmaceuticals that are in use in Sweden. Thus, most likely, one or several tons of pharmaceuticals leak out to the Scanian recipients annually. The analysis of river samples shows that the dilution of wastewater is a key parameter in reducing concentrations. However, some locations have remarkably high concentrations, which occur when the volume wastewater is large in relation to the flow in the river. These kinds of regional results are of importance when selecting where advanced treatment should be prioritized in a first instance, as requested by the Swedish EPA.  相似文献   
9.
Abstract

The methyl glycosides of the the tri-and tetrasaccharides present in the linkage region of heparin, methyl O-(β-D-galactopyranosyl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside and methyl O-(β-D-glucopyranosyluronic acid)-(l→3)-O-(β-D-galactopyranosyl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside sodium salt, were synthesized together with their phosphate containing analogues, methyl O-(β-D-galactopyranosyl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside 2-(disodium phosphate) and methyl O-(β-D-glucopyranosyluronic acid)-(l→3)-O-(β-D-galactopyrano-syl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside 2-(disodium phosphate) sodium salt, which are glycosides of the structure found in the linkage region of heparan sulphate.  相似文献   
10.
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号