首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
化学   99篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   9篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   11篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1976年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Miguel B  Bastida A  Zúñiga J  Requena A  Halberstadt N 《Faraday discussions》2001,(118):257-68; discussion 295-314
A hybrid quantum-classical simulation of the vibrational predissociation of Br2...Nen, (n = 2-11) clusters in the B electronic state is carried out. The time-evolution of the reactants, products, and intermediates is analyzed by a kinetic mechanism consisting of three elementary steps: direct vibrational predissociation (VP), intramolecular vibrational redistribution (IVR), and evaporative cooling (EC). The importance of intramolecular vibrational redistribution followed by evaporative cooling relative to direct vibrational predissociation is shown to increase rapidly with increasing cluster size. Final product state distributions reveal that only one or less Br2 stretching quantum per neon atom is required in order to achieve complete dissociation (n quanta for n < or = 9 and n - 1 for n = 10 and 11). The proportion of available energy going into translation is proposed as a parameter to study the statistical behavior of the Van der Waals clusters. It is shown to depend only on the number of remaining degrees of freedom, a characteristic of a statistical behavior, for n > or = 3.  相似文献   
2.
Abstract— Previous work has shown that fibroblast-derived collagenase/matrix-metalloproteinase-1(MMP–1), responsible for the breakdown of dermal interstitial collagen, was dose-dependently induced in vitro and in vivo by UVA irradiation and this induction was at least partly mediated byinterleukin–6(IL–6). We here provide evidence that UVA-inducedIL–1α andIL–1β play a central role in the induction of the synthesis both ofIL–6 and collagenase/MMP–1. In contrast to the late increase ofIL–1α andIL–1β mRNA levels at 6 h postirradiation, bioactivity ofIL–1 is already detectable at 1 h postirradiation. This early peak ofIL–1 bioactivity appears to be responsible for the induction ofIL–6 synthesis and together withIL–6 lead to an increase of the steady-state mRNA level of collagenase/MMP–1 as deduced from studies usingIL–1α andIL–1β antisense oligonucleotides or neutralizing antibodies againstIL–1α andIL–1β Besides the early posttranslationally controlled release of intracellularIL–1, a latter pretranslationally controlled synthesis and release ofIL–1 perpetuates the UV response. From these data we suggest a UV-induced cytokine network consisting ofIL–1α,IL–1β andIL–6, which via interrelated autocrine loops induce collagenase/MMP–1 and thus may contribute to the loss of interstitial collagen in cutaneous photoaging.  相似文献   
3.
We report here the first pentanuclear Ba(II) complex of a new tri-aza, tri-oxa macrocycle with two carboxymethyl "arms" pending from two N atoms, H2L2. The crystal structure corresponds to the formula [Ba5(H0.375L2)4(ClO4)(CH3CH2OH)(H2O)2](ClO4)2.5 x 9.5H2O and reveals the presence of four molecules of the ligand surrounding five Ba(II) ions, giving rise to an unusual structure with the metal ions inside a spherical organic cavity.  相似文献   
4.
As part of a programme to synthesize thione derivatives with pentacyclo[5.4.0.02,6.03,10.05,9]undecane moieties it was decided to sulfurize the monoacetal 6 of pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione 2. Unexpectedly the diol 9 was isolated as the product.  相似文献   
5.
The synthesis of a new oxaaza macrocyclic ligand, L, derived from O(1),O(7)-bis(2-formylphenyl)-1,4,7-trioxaheptane and tren containing an amine terminal pendant arm, and its metal complexation with alkaline earth (M = Ca(2+), Sr(2+), Ba(2+)), transition (M = Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)), post-transition (M = Pb(2+)), and Y(3+) and lanthanide (M = La(3+), Er(3+)) metal ions are reported. Crystal structures of [H(2)L](ClO(4))(2).3H(2)O, [PbL](ClO(4))(2), and [ZnLCl](ClO(4)).H(2)O are also reported. In the [PbL] complex, the metal ion is located inside the macrocyclic cavity coordinated by all N(4)O(3) donor atoms while, in the [ZnLCl] complex, the metal ion is encapsulated only by the nitrogen atoms present in the ligand. pi-pi interactions in the [H(2)L](ClO(4))(2).3H(2)O and [PbL](ClO(4))(2) structures are observed. Protonation and Zn(2+), Cd(2+), and Cu(2+) complexation were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. The 10-fold fluorescence emission increase observed in the pH range 7-9 in the presence of Zn(2+) leads to L as a good sensor for this biological metal in water solution.  相似文献   
6.
7.
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme‐catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non‐ inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside‐modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular‐recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non‐inactivable derivatives a challenging task.  相似文献   
8.
Plants in the Amaryllidaceae family synthesize a diversity of bioactive alkaloids. Some of these plant species are not abundant and have a low natural multiplication rate. The aims of this work were the alkaloids analysis of a Habranthus cardenasianus bulbs extract, the evaluation of its inhibitory activity against cholinesterases, and to test several propagation strategies for biomass production. Eleven compounds were characterized by GC-MS in the alkaloid extract, which showed a relatively high proportion of tazettine. The known alkaloids tazettine, haemanthamine, and the epimer mixture haemanthidine/6-epi-haemanthidine were isolated and identified by spectroscopic methods. Inhibitory cholinesterases activity was not detected. Three forms of propagation were performed: bulb propagation from seed, cut-induced bulb division, and micropropagated bulbs. Finally, different imbibition and post-collection times were evaluated in seed germination assays. The best propagation method was cut-induced bulb division with longitudinal cuts into quarters (T1) while the best conditions for seed germination were 0-day of post-collection and two days of imbibition. The alkaloids analyses of the H. cardenasianus bulbs showed that they are a source of anti-tumoral alkaloids, especially pretazettine (tazettine) and T1 is a sustainable strategy for its propagation and domestication to produce bioactive alkaloids.  相似文献   
9.
Complexes between the Py(2)N(6)Ac(4) (H(4)L) ligand containing four carboxylate pendant arms and trivalent lanthanide ions have been synthesized, and structural studies have been made both in the solid state and aqueous solution. The crystal structures of the La, Ce, Sm, Tb, Dy, Ho, Er, Tm, and Lu complexes, with chemical formulas [LaH(2)L](NO(3)).3H(2)O (1), [Ce(4)L(2)](NO(3))(4).30H(2)O (2), [SmHL].EtOH.3H(2)O (5), [TbHL].EtOH.3H(2)O (8), [DyHL].2EtOH.2H(2)O (9), [HoHL].3H(2)O (10), [ErHL].EtOH.3H(2)O (11) [TmHL].EtOH.3H(2)O (12), and [LuHL].3H(2)O (14), have been determined by single-crystal X-ray crystallography. In the solid state, the complexes of the lighter lanthanide ions La(3+)-Dy(3+) show a 10-coordinated geometry close to a distorted bicapped antiprism, where the carboxylate pendants are situated alternatively above and below the best plane that contains the nitrogen donor atoms. The complexes of the heavier ions, Ho(3+)-Lu(3+), have a 9-coordinated geometry close to distorted tricapped trigonal prism, with one of the pendant carboxylate groups uncoordinated. The ligand is in a "twist-fold" conformation, where the twisting of the pyridine units is accompanied by an overall folding of the major ring of the macrocycle so that the pyridine nitrogen atoms and the metal are far from linear. The aqueous solution structures of the complexes were thoroughly characterized, the diamagnetic ones (La(3+) and Lu(3+)) by their COSY NMR spectra, and the paramagnetic complexes using a linear least-squares fitting of the (1)H LIS (lanthanide-induced shift) and LIR (lanthanide-induced relaxation) data with rhombic magnetic susceptibility tensors. The solution structures obtained for the La(3+)-Dy(3+) complexes (10-coordinate) and for the Tm(3+)-Lu(3+) complexes (9-coordinate) are in very good agreement with the corresponding crystal structures. However, the 10-coordinate structure is still exclusive in solution for the Ho(3+) complex and predominant for the Er(3+) complex.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号