首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   18篇
数学   2篇
物理学   1篇
  2022年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1973年   1篇
排序方式: 共有21条查询结果,搜索用时 203 毫秒
1.
2.
The direct methanol fuel cell (DMFC) has the potential to replace lithium‐ion rechargeable batteries in portable electronic devices, but currently experiences significant power density and efficiency losses due to high methanol crossover through polymer electrolyte membranes (PEMs). Numerous publications document the synthesis and characterization of new PEMs for the DMFC. This article reviews this research, transport phenomena in PEMs, and experimental techniques used to evaluate new PEMs for the DMFC. Although many PEMs do not show significant improvements over Nafion®, the benchmark PEM in DMFCs, experimental results show that several new PEMs exhibit lower methanol crossover at similar proton conductivities and/or higher DMFC power densities. These results and recommendations for future research are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Parts B: Polym Phys 44: 2201–2225, 2006  相似文献   
3.
Over the past 2 decades, the use of time‐resolved Fourier transform infrared/attenuated total reflection (ATR) spectroscopy for the measurement of diffusion in polymers has grown. ATR is a powerful technique for the measurement of diffusion in polymers because it is an in situ technique that is relatively inexpensive, provides reliable short‐time data, and provides a wealth of information at the molecular level. This article highlights the technique and its application to numerous studies, ranging from the diffusion of drugs in human skin to chemical warfare agents in barrier materials. In addition to these topics, recent studies with ATR to quantify and model molecular interactions during the diffusion process are reviewed. In the future, the ATR technique may have an impact on a variety of emerging fields in which diffusion in polymers plays an important role, such as fuel cells, membrane separation, sensors, and drug delivery. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2794–2807, 2003  相似文献   
4.
Robust hydroxide conducting membranes are required for long‐lasting, low‐cost solid alkaline fuel cells (AFCs). In this study, we synthesize Nafion‐based anion exchange membranes (AEMs) via amination of the Nafion precursor membrane with 1,4‐dimethylpiperazine. This initial reaction produces an AEM with covalently attached dimethylpiperazinium cations neutralized with fluoride anions, while a subsequent ion exchange reaction produces a hydroxide ion conducting membrane. These AEMs possess high thermal stability and different thermal transition temperatures compared to Nafion, while small‐angle X‐ray scattering reveals a similar ionic morphology. The hydroxide ion conductivity of the Nafion‐based AEM is fivefold lower than the proton conductivity of Nafion at 80 °C and 90% relative humidity. More importantly, the hydroxide conductivity is insensitive to drying and rehydrating the membrane, which is atypical of other AEMs with quaternary ammonium cations. The high chemical and thermal stability of this hydroxide conducting Nafion‐based AEM provides a promising alternative for AFCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
5.
The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.  相似文献   
6.
Imaging microscopic viscosity with confocal scanning optical tweezers   总被引:2,自引:0,他引:2  
The techniques of confocal microscopy and optical tweezers have shown themselves to be powerful tools in biological and medical research. We combine these methods to develop a minimally invasive instrument that is capable of making hydrodynamic measurements more rapidly than is possible with other devices. This result leads to the possibility of making scanning images of the viscosity distribution of materials around biopolymer-producing cells. 100 x 100 images can be taken with 0.5-microm spatial resolution in 3 min. An image of the viscosity distribution around a pullulan-producing cell of Aureobasidium pullulans is shown as an example.  相似文献   
7.
The morphology and ionic conductivity of poly(1‐n‐alkyl‐3‐vinylimidazolium)‐based homopolymers polymerized from ionic liquids were investigated as a function of the alkyl chain length and counterion type. In general, X‐ray scattering showed three features: (i) backbone‐to‐backbone, (ii) anion‐to‐anion, and (iii) pendant‐to‐pendant characteristic distances. As the alkyl chain length increases, the backbone‐to‐backbone separation increases. As the size of counterion increases, the anion‐to‐anion scattering peak becomes apparent and its correlation length increases. The X‐ray scattering features shift to lower angles as the temperature increases due to thermal expansion. The ionic conductivity results show that the glass transition temperature (Tg) is a dominant, but not exclusive, parameter in determining ion transport. The Tg‐independent ionic conductivity decreases as the backbone‐to‐backbone spacing increases. Further interpretation of the ionic conductivity using the Vogel–Fulcher–Tammann equation enabled the correlation between polymer morphology and ionic conductivity, which highlights the importance of anion hoping between adjacent polymer backbones. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
8.
Chemical analysis of an East China Sea marine-derived fungus, Aspergillus sydowii (MF357) returned three new tris-pyrogallol ethers, sydowiols A–C (13), and two known bis-pyrogallol ethers, violaceols I (4) and II (5). Structures were assigned on the basis of detailed spectroscopic analysis and by consideration of symmetry. Sydowiols A (1) and C (3) were responsible for the inhibitory activity detected in the crude fungal extract against Mycobacterium tuberculosis protein tyrosine phosphatase A (PtpA).  相似文献   
9.
Direct methanol fuel cells (DMFCs) are promising portable power sources. However, their performance diminishes significantly because of high methanol crossover (flux) in the polymer electrolyte membrane (e.g., Nafion 117) at the desired stoichiometric methanol feed concentration. In this study, the diffusion and sorption of methanol and water in Nafion 117 were measured using time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. This technique is unique because of its ability to measure multicomponent diffusion and sorption within a polymer on a molecular level in real time as function of concentration. Both the effective mutual diffusion coefficients and concentrations of methanol and water in Nafion 117 were determined with time-resolved FTIR-ATR spectroscopy as a function of methanol solution concentration. The methanol flux, calculated from FTIR-ATR, matched that determined from a conventional technique (permeation cell) and increased by almost 3 orders of magnitude over the methanol solution concentration range studied (0.1-16 M). Furthermore, the data obtained in this study reveal that the main contribution to the increase in methanol flux is due to methanol sorption in the membrane.  相似文献   
10.
Viard M  Blumenthal R  Raviv Y 《Electrophoresis》2002,23(11):1659-1666
We describe a protocol for preparative-scale purification of the fusion protein of the human immunodeficiency virus type 1 (HIV-1), gp41, from cells overexpressing the viral envelope proteins and from HIV-1 isolates. In the first step, the proteins were extracted from the membrane in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer. The extract was then subjected to separation by continuous elution electrophoresis using a nonionic or zwitterionic detergent in the mobile elution buffer, which results in the simultaneous exchange of SDS with that detergent. The separated proteins were obtained in an SDS-free buffer containing either Brij, 3-[(3-chloramidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or Triton X-100 and could then be subjected to subsequent purification steps like isoelectric focusing in the second dimension or immunoaffinity chromatography. The dilute protein fraction was concentrated and applied on a 10 mL immunoaffinity column packed with anti-gp41 monoclonal antibody immobilized on protein-G sepharose. The protein was eluted from the column at pH 2.7 and obtained in pure form in amounts of 30-50 micrograms that constituted a yield of 1%. The pure gp41 could not be sustained in solution in the absence of detergent and was not susceptible to proteolytic digestion by trypsin. The identification of the protein and the degree of purity was confirmed indirectly using surface enhanced laser desorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS). The possible application of this approach for the isolation of integral membrane proteins with the propensity to undergo spontaneous folding and aggregation is being discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号