首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
数学   1篇
  2020年   1篇
  2005年   2篇
  1993年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
A surfactant-mediated solid phase extraction procedure is applied for the preconcentration of benzalkonium (BA) chloride from a river water sample. Dodecyl sulfate is attached to a strong anion exchange resin and aqueous samples are passed through a column containing this surfactant-resin material. Benzalkonium chloride, a cationic compound very useful in cosmetics and an important fungicide, is adsorbed from the aqueous solution onto the sorbent via hydrophobic and electrostatic interactions. When using traditional silica-based nonpolar sorbents, strong electrostatic interactions between the cationic analyte and the silica surface make elution difficult. Using the presented sorbent, electrostatic attractions occur between the benzalkonium cations and removable dodecyl sulfate anions. Removing this ion pair from the sorbent results in efficient elutions. The results of this solid-phase extraction (SPE) method are presented in terms of various rinse solutions parameters, breakthrough studies and a real river water sample.  相似文献   
3.
A unique solid phase extraction (SPE) sorbent having a removable “stationary phase” is presented. This removable phase consists of alkyltrimethylammonium surfactant, which is initially immobilized onto hydrophilic strong cation exchange resin. The surfactant chain through hydrophobic interactions extracts hydrophobic analytes in the same manner as conventional bonded alkyl moieties on silica-based non-polar sorbents. For the extraction of very hydrophobic species with conventional sorbents, solvents such methylene chloride and benzene are needed to break strong hydrophobic interactions for efficient elutions. These solvents however are toxic to the analyst and present a significant environmental concern. Using a removable “stationary phase”, hydrophobic interactions need not be broken between the analyte and the sorbent. In the presented approach, the surfactant (“stationary phase”) is removed via ion exchange with exchange ions in very mild aqueous-based and instrument compatible solutions. The analyte, being associated with the surfactant, is also removed in the process. Very efficient elutions of analytes, regardless of hydrophobicity, under mild and more favorable environmental conditions are a direct benefit of having a removable “stationary phase”. Rinse solution parameters explored include exchange cation type and concentration, and alcohol type and concentration. The extraction of three test molecules of varying hydrophobicity, naphthalene, pyrene and benzo(ghi)perylene, is investigated using this sorbent material.  相似文献   
4.
The in vitro cell survival, localization and ultrastructural changes following irradiation were examined in 9L glioma cells sensitized with a new photosensitizer, lysyl chlorin p6 (LCP). In clonogenic assays, LCP was 10–100-fold more phototoxic than photofrin II on a μg/mL basis. Lysyl chlorin p6 uptake was blocked when cells were incubated at 2°C. In view of the chemical properties of LCP, this finding indicates that uptake probably occurred through the endocytic pathway. Fluorescence studies showed LCP localized in a region of the endocytic compartment similar in size, shape and distribution to that labeled by lucifer yellow CH (LY), as well as localizing diffusely throughout the perinuclear cytoplasm. Cells stained with both LY and LCP, however, had distinctly separate regions of staining. Lysyl chlorin p6 localization differed from that of fluorescent probes labeling the mitochondria, Golgi apparatus and endoplasmic reticulum. Ultrastructural changes at both 2 and 30 min after laser irradiation were similar. Mitochondria were often condensed or swollen and also had constrictions and cytoplasmic invaginations. The Golgi apparatus, perinuclear space and rough endoplasmic reticulum (RER) were dilated. These data demonstrate that LCP localizes in a portion of the endosomal compartment, but that morphologic damage initially occurs in the mitochondria, Golgi apparatus and RER.  相似文献   
5.
Abstract— The effects of photodynamic therapy (PDT) on normal brain tissue and depth of brain necrosis were evaluated in rats receiving 2.5 mg/kg aluminum phthalocyanine tetrasulfonate. Twenty-four hours later brains were irradiated with 675 nm light at a power density of 50 mW/cm2 and energy doses ranging from 1.6 to 121.5 J/cm2. Brains were removed 24 h after PDT and evaluated microscopically. When present, brain lesions consisted of well-demarcated areas of coagulation necrosis. When plotting the depth of necrosis against the natural log of energy dose, the data fit a piecewise linear model, with a changepoint at 54.6 J/cm2 and an x intercept of 7.85 J/cm2. The slopes before and after the changepoint were 2.04 and 0.21 mm/In J cm-2, respectively. The x intercept suggests a minimum light dose below which necrosis of normal brain will not occur, whereas the changepoint indicates the energy density corresponding to an approximate maximum depth of necrosis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号