首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   13篇
  国内免费   2篇
化学   211篇
晶体学   1篇
力学   3篇
数学   9篇
物理学   22篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   5篇
  2014年   8篇
  2013年   18篇
  2012年   11篇
  2011年   17篇
  2010年   12篇
  2009年   13篇
  2008年   15篇
  2007年   14篇
  2006年   12篇
  2005年   14篇
  2004年   7篇
  2003年   5篇
  2002年   11篇
  2001年   7篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有246条查询结果,搜索用时 312 毫秒
1.

The adsorption and photocatalytic degradation of Ethyl methylphosphonate (EMPA) on powdery TiO2 film has experimentally investigated using attenuated total reflection-infrared Fourier transform spectroscopy (ATR-FTIR) in ambient condition. Characteristic IR frequency as P-O-C vibration mode as EtO was observed by EMPA adsorbed at the surface of TiO2. By TiO2 photocatalysis, the adsorbed EMPA was decomposed to methyl phosphonic acid and phosphoric acid. The increment of IR intensity of which is assigned to Ti–O-P-O-Ti of EMPA was accompanied with increasing the IR peak intensity assigned to MPA. About that, we suggest that the appearance of the Ti–O-P-O-Ti of EMPA by the TiO2 photocatalysis is regarded as acceleration of the hydrolysis of EMPA by the surface OH groups of TiO2. The plausible adsorption structure and the photocatalytic reaction mechanism of EMPA at the surface of TiO2 photocatalyst were elucidated.

  相似文献   
2.
3.
4.
Geometric structures and excited-state proton dislocation of size-selected salicylic acid clusters (salicylic acid and 5-methoxysalicylic acid) with water were studied by using laser spectroscopic techniques. Fluorescence excitation, dispersed fluorescence, and infrared (IR) spectra of those clusters in supersonic jets were examined for both the electronic ground (S0) and first excited (S1) states. The geometric structures of the clusters were determined on the basis of the IR spectra of the OH stretch region with the help of quantum chemical calculations. The hydroxyl group of the water moiety in the clusters forms a ring involving the carboxylic group of the salicylic acid moiety. The IR spectra in S0 show that the intramolecular hydrogen bond in the salicylic acid moiety is still held upon cluster formation, but the phenolic OH stretch band intensity is remarkably weaken in the clusters. The IR spectra in the S1 state and dispersed fluorescence spectra indicated that the intramolecular excited state proton dislocation is hardly affected by the microsolvation with water, in contrast with the strong suppression of the dislocation in the self-solvation.  相似文献   
5.
A supersonic jet instrument for fluorescence spectrometry is described. It consists of a high-temperature free expansion nozzle for continuous sample introduction and a vacuum chamber equipped with a high-speed pumping system. Rotationally cooled spectra obtained with the supersonic jet are compared with gas-phase spectra measured at high temperature for perylene and benzo[a]pyrene molecules. Each component of the unresolved band structure in the high-temperature spectra was found to be composed of a rotational congestion of several vibrational bands. For a 1:1 mixture of perylene and benzo[a]pyrene, selective detection is possible by using supersonic jet spectrometry. The detection limit for perylene is 100 ng. The advantage of this technique over other low-temperature spectrometric methods based on Shpol'skii and matrix isolation effects are discussed.  相似文献   
6.
Alanine synthesis by reductive amination of pyruvate was performed by the combination of NADH regeneration system and alanine dehydrogenase (AlaDH). The conversion of pyruvate to alanine was 99% after 1 h. Leucine synthesis was also carried out by the combination of NADH regeneration system and leucine dehydrogenase (LeuDH). The conversion of 4-methyl-2-oxovalerate to leucine was 60% after 1.5 h.  相似文献   
7.
A fast disintegrating compressed tablet was formulated using amino acids, such as L-lysine HCl, L-alanine, glycine and L-tyrosine as disintegration accelerator. The tablets having the hardness of about 4 kgf were prepared and the effect of amino acids on the wetting time and disintegration time in the oral cavity of tablets was examined on the basis of surface free energy of amino acids. The wetting time of the tablets increased in the order of L-lysine HCl, L-alanine, glycine and L-tyrosine, whereas the disintegration time in the oral cavity of the tablets increased in the order of L-alanine, glycine, L-lysine HCl and L-tyrosine. These behaviors were well analyzed by the introduction of surface free energy. When the polar component of amino acid was large value or the dispersion component was small value, faster wetting of tablet was observed. When the dispersion component of amino acid was large value or the dispersion component was small value, faster disintegration of tablet was observed, expect of L-tyrosine tablet. The fast disintegration of tablets was explained by the theory presented by Matsumaru.  相似文献   
8.
We previously developed cyclic ADP-carbocyclic ribose (cADPcR, 2) as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. A series of the N1-ribose modified cADPcR analogues, designed as novel stable mimics of cADPR, which were the 2"-deoxy analogue 3, the 3"-deoxy analogue 4, the 3"-deoxy-2"-O-(methoxymethyl) analogue 5, the 3"-O-methyl analogue 6, the 2",3"-dideoxy analogue 7, and the 2",3"-dideoxydidehydro analogue 8, were successfully synthesized using the key intramolecular condensation reaction with phenylthiophosphate-type substrates. We investigated the conformations of these analogues and of cADPR and found that steric repulsion between both the adenine and N9-ribose moieties and between the adenine and N1-ribose moieties was a determinant of the conformation. The Ca(2+)-mobilizing effects were evaluated systematically using three different biological systems, i.e., sea urchin eggs, NG108-15 neuronal cells, and Jurkat T-lymphocytes. The relative potency of Ca(2+)-mobilization by these cADPR analogues varies depending on the cell-type used: e.g., 3"-deoxy-cADPcR (4) > cADPcR (2) > cADPR (1) in sea urchin eggs; cADPR (1) > cADPcR (2) approximately 3"-deoxy-cADPcR (4) in T-cells; and cADPcR (2) > cADPR (1) > 3"-deoxy-cADPcR (4) in neuronal cells, respectively. These indicated that the target proteins and/or the mechanism of action of cADPR in sea urchin eggs, T-cells, and neuronal cells are different. Thus, this study represents an entry to cell-type selective cADPR analogues, which can be used as biological tools and/or novel drug leads.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号