排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
下载免费PDF全文

A novel Ga N-based vertical heterostructure field effect transistor(HFET) with nonuniform doping superjunctions(non-SJ HFET) is proposed and studied by Silvaco-ATLAS,for minimizing the specific on-resistance(R_(on)A) at no expense of breakdown voltage(BV).The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars,which is different from that of the conventional Ga N-based vertical HFET with uniform doping superjunctions(un-SJ HFET).A physically intrinsic mechanism for the nonuniform doping superjunction(non-SJ) to further reduce R_(on)A at no expense of BV is investigated and revealed in detail.The design,related to the structure parameters of non-SJ,is optimized to minimize the R_(on)A on the basis of the same BV as that of un-SJ HFET.Optimized simulation results show that the reduction in R_(on)A depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ.The maximum reduction of more than 51% in R_(on)A could be achieved with a BV of 1890 V.These results could demonstrate the superiority of non-SJ HFET in minimizing R_(on)A and provide a useful reference for further developing the Ga N-based vertical HFETs. 相似文献
2.
Improvement of reverse blocking performance in vertical power MOSFETs with Schottky–drain-connected semisuperjunctions
下载免费PDF全文

To enhance the reverse blocking capability with low specific on-resistance,a novel vertical metal-oxidesemiconductor field-effect transistor(MOSFET) with a Schottky-drian(SD) and SD-connected semisuperjunctions(SDD-semi-SJ),named as SD-D-semi-SJ MOSFET is proposed and demonstrated by two-dimensional(2D) numerical simulations.The SD contacted with the n-pillar exhibits the Schottky-contact property,and that with the p-pillar the Ohmic-contact property.Based on these features,the SD-D-semi-SJ MOSFET could obviously overcome the great obstacle of the ineffectivity of the conventional superjunctions(SJ) or semisuperjunctions(semi-SJ) for the reverse applications and achieve a satisfactory trade-off between the reverse breakdown voltage(BV) and the specific on-resistance(R_(on)A).For a given pillar width and n-drift thickness,there exists a proper range of n-drift concentration(N),in which the SD-D-semi-SJ MOSFET could exhibit a better trade-off of R_(on)A-BV compared to the predication of SJ MOSFET in the forward applications.And what is much valuable,in this proper range of N,the desired BV and good trade-off could be achieved only by determining the pillar thickness,with the top assist layer thickness unchanged.Detailed analyses have been carried out to get physical insights into the intrinsic mechanism of R_(on)A-BV improvement in SD-D-semi-SJ MOSFET.These results demonstrate a great potential of SD-D-semi-SJ MOSFET in reverse applications. 相似文献
3.
1