首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   2篇
  2023年   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
热值是煤质特性的重要参数之一,很大程度上影响着燃煤锅炉的运行。为了克服传统检测方法所存在的问题,将激光诱导击穿光谱(LIBS)应用于燃煤热值的定量分析。煤的结构复杂,所含的元素种类众多,包括了主量元素、次量元素和痕量元素,致使煤的LIBS光谱信息复杂。如何有效提取LIBS光谱信息,实现准确的定量化测量是LIBS在煤特性检测中发挥作用的前提和基础。近年来,随着人工智能技术的发展,相关的分析技术也开始应用于煤的工业指标分析和热值预测中。为实现煤样品中LIBS光谱信息的有效提取,同时为克服常规的分析方法易出现的过渡拟合、收敛性不好等问题,提出采用结合K-fold Cross Validation(K-CV)参数优化的支持向量机(SVM)回归方法,实现LIBS定量分析煤中的热值。SVM方法是结构风险最小化的近似实现,可用于模式分类和非线性回归。为了得到有效的LIBS分析模型,实验选用44种电厂常用的热值含量不同的煤样作为实验对象,选择其中33个作为训练集,剩余11个为测试集。利用搭建的LIBS实验系统获取所选煤样品的等离子体发射光谱数据,首先分析了SVM热值回归模型的参数-惩罚因子C、核函数参数g与模型精度的关联,确定Cg最佳取值范围,然后分别建立了基于LIBS全谱和某些元素(非金属元素和金属元素)特征光谱的SVM回归模型。利用训练集光谱数据,结合K-CV法得到热值SVM回归模型的最优参数Cg的值,建立基于SVM最优参数的煤热值定量分析模型。然后将测试集的光谱数据作为输入量用于测试所建立模型的可靠性,得到分别采用全谱、非金属元素特征光谱、非金属与金属元素特征谱相结合的热值定量分析模型,其决定系数R2均达到0.99以上,均方误差分别为0.12,0.17和0.06 (MJ·kg-1)2,预测平均相对偏差分别为1.2%,1.23%和0.69%。结果表明:基于K-CV参数优化SVM回归方法可用于LIBS技术实现燃煤热值的定量分析,且可得到较高的分析精确度和准确度;同时通过对比选用不同的光谱特征的定量分析模型可知,采用非金属与金属元素的特征光谱所建立的基于K-CV参数优化SVM的热值定量模型,能够有效提高LIBS应用于快速检测煤热值的精度和准确度,实现煤热值的准确预测。  相似文献   
2.
LIBS对煤中热值检测的新型校正模型   总被引:1,自引:0,他引:1  
将激光诱导击穿光谱技术(LIBS)应用于煤中热值的检测。针对传统的通道面积归一化方法未能考虑煤质检测的物理/化学机制、从而限制了所建模型在精确性、准确性、可重复性的情况,提出了一种新型的基于光谱偏差产生原理的校正模型。模型选取了19组煤样品,随机选择其中15组为校正集,用于建立热值的定量分析模型,剩余四种为预测集,用于对所建模型进行检验与评价。模型从光谱偏差因素的产生因素出发,通过原子光谱发射理论结合斯塔克展宽公式,推导出LIBS条件下自吸收效应的影响机制及其所引起的偏差的修正方法。通过元素间相互干扰结合基体效应的微观机理对基体效应进行光谱的偏差分析,并根据K系数法的思路对LIBS中元素间相互干扰进行修正,通过建立光谱的电子密度,等离子体温度,元素浓度的数值模型对基体效应引起的光谱偏差进行深度修正。因而经过自吸收效应—元素间相互干扰—基体效应深度修正后,模型对于所研究样品范围内其拟合优度R2=0.967,RMSEP=0.49 MJ·kg-1,RMSE=0.45 MJ·kg-1,MRE=2.42%,ARE=1.64%的同时RSD=5.79%,RSDP=8.10%。相对于传统的通道面积归一化-多元线性回归方法的0.405,8.28 MJ·kg-1,4.14 MJ·kg-1,22.85%,52.48%,18.28%,32.85%,表明测量的精确度与准确度都得到明显的提高,证明该模型具有很好的应用价值。  相似文献   
3.
光催化是一种理想的洁净能源生产和环境污染治理技术,在推动未来“碳达峰,碳中和”的实现和调整我国能源结构具有重要意义。层状结构的铋基催化剂因其具有合适的禁带宽度所以在光催化领域中备受关注。然而,低效率的光生载流子的分离与传输过程却限制了其光催化活性。本文简要地总结了通过表界面调控增强铋基催化剂光生载流子分离与传输效率的策略,包括形貌调控、缺陷工程、杂原子掺杂和异质结构建等。特别地,从电子和几何结构角度分析了上述策略对增强铋基催化剂内建电场的强度、构筑内部高效载流子传输通道和延长载流子寿命的作用机制,为进一步研究设计具有高效载流子分离和传输效率的催化剂提供理论参考依据。最后,分析了不同表面界面策略提高载流子分离和传输效率的具体原因以及铋基催化剂在工业应用中面临的挑战和发展前景。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号