首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   6篇
化学   7篇
力学   1篇
综合类   4篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
气体扩散系数是一个重要的传质基础数据,基于分子模拟理论,利用分子模拟软件Materials Studio 7.0对部分有机蒸气-空气扩散系数,包括正戊烷、正己烷、正庚烷、正辛烷,进行分子动力学模拟,建立气体分子结构模型,构建晶胞,经弛豫、分子动力学运行后,对平衡体系进行分子动力学运行和分析,得到气体分子的均方位移曲线。输出相关数据并计算扩散系数,然后分析分子量及体系温度对模拟结果的影响情况,同时将扩散系数模拟值与实测值进行对比分析,从而验证了该方法的可行性。  相似文献   
2.
以正硅酸四甲酯(TMOS)为硅源,P123(EO20PO70EO20)为表面活性剂,在p H=6的磷酸缓冲体系中制备了囊泡状二氧化硅材料.利用乙醇萃取脱除模板剂P123,电镜观测结果表明所得二氧化硅具有大孔囊泡结构,N2吸附结果表明其具有高比表面积和大孔容.通过Boehm滴定法确定了硅羟基数量与吸水率呈正相关.用囊泡状二氧化硅材料与商业化活性炭(AC)和硅胶(SG)对水蒸气、正己烷和油气进行静态吸附.在自建的动态正己烷吸附装置上用对囊泡状二氧化硅材料和商业化AC和SG对正己烷进行动态吸附.吸附结果表明,囊泡状二氧化硅材料的静/动态吸附容量和稳定性都远高于商业化活性炭和硅胶.  相似文献   
3.
首先, 在碱性条件下, 不使用表面活性剂, 采用St?ber小球法以正硅酸四乙酯(TEOS)和正硅酸四丙酯(TPOS)为硅源, 生成初级氧化硅球形颗粒; 然后, 使酚醛树脂(间苯二酚和甲醛)与球形氧化硅的羟基共缩合形成酚醛树脂-氧化硅复合材料; 最后, 经高温碳化和酸蚀获得了空心碳纳米球(HCNSs). 通过调节TEOS/TPOS的摩尔比获得了一系列具有良好的单分散性且粒径、 壁厚可调节的HCNSs, 其粒径和壁厚分别在280~430 nm和15~63 nm的范围内. 仅以TPOS为硅源时合成的HCNS-0/4具有较大的粒径(426 nm)和壁厚(63 nm)、 较高的比表面积(1216 m2/g)和孔容(0.508 cm3/g), 并且具有较大的挥发性有机化合物(VOCs)吸附性能, 其正己烷、 甲苯和油气的静态吸附容量分别为2.02, 1.42和0.926 g/g, 正己烷和甲苯的动态吸附容量分别为2.01 g/g和1.37 g/g, 均远高于商业化活性炭.  相似文献   
4.
三嵌段共聚物EO20PO70EO20相分离行为的耗散粒子动力学模拟   总被引:1,自引:0,他引:1  
采用耗散粒子动力学(DPD)方法研究了嵌段共聚物EO20PO70EO20(P123)在水、乙醇/水溶液及二氧化硅溶胶体系中的相分离行为. 不同质量分数的P123在水溶液中共形成4种相分离状态: 球状胶束(10%); 椭球胶束(20%)、棒状胶束(30%)和三维立方胶束(50%). 在模板剂质量分数为10%的乙醇/水溶液中, 模板剂胶束稳定性随着乙醇含量的增加而变差. 在二氧化硅溶胶体系中, 模板剂质量分数低于5%时无胶束形成; 模板剂质量分数增至10%时, P123发生相分离形成三维球状胶束; 随着模板剂质量分数的进一步增加, 模板剂分子夹含着水分子形成三维椭球状结构(20%)、三维立方结构(40%)和层状结构(60%). 模拟结果与实验结果一致, 说明DPD模拟可以从计算角度推测模板剂对介孔材料结构的影响.  相似文献   
5.
研究四种吸附剂(两种市售活性炭和两种自制硅胶)对甲醇、正己烷和水蒸气的交替吸附性能以及动态吸附过程中吸附剂温度的的变化。结果表明:吸附顺序的不同对吸附剂最后总的吸附量没有较大的影响,相比先吸附正己烷对吸附剂的影响大于先吸附甲醇对吸附剂的影响;活性炭吸附少量的甲醇对水的吸附率影响较大,AC-1吸水率降低71.7%,AC-2降低98.4%;硅胶吸附少量的甲醇后再吸附水时吸附率为负,而先吸附少量的水后因为甲醇和水的互溶,所以硅胶吸附甲醇的效果会得到一定的提高,SG-1提高69.5%,SG-2提高了81.1%,因此在需要紧急处理时可以先短暂的吸附水之后再去吸附甲醇;甲醇的解吸率高于正己烷的解吸率,硅胶的解吸比活性炭的解吸的更彻底,解吸之后活性炭的吸附率明显降低,因此连续性长期使用可以选择硅胶作为吸附剂;AC、SG最大温差分别为23.3℃、13.5℃、18.2℃和21.4℃,AC-2对甲醇具有较大的吸附量,温度变化较小,为以后应用于醇类的吸附回收技术提供实验支撑。  相似文献   
6.
吸附法是控制挥发性有机物(VOCs)的重要方法,对吸附材料的研究有着重要的意义。为了开发出吸附量高、稳定性好的吸附材料,利用溶胶-凝胶法制备出疏水二氧化硅气凝胶,并对其进行了低温氮气吸附、傅里叶变换红外光谱和热重分析,同时对疏水二氧化硅气凝胶进行了甲苯蒸气的静态、动态和循环吸附实验,研究其对甲苯蒸气的吸附性能。结果表明,所制疏水二氧化硅气凝胶为比表面积达732m~2/g的介孔吸附材料,其表面具有疏水性甲基基团,吸附容量高达1.6g/g,吸附稳定性强,动态吸附温升最高达12℃,用Logistic模型拟合吸附穿透曲线相似度高。  相似文献   
7.
压降是吸收塔设计及操作的重要参数,吸收塔内置不同结构的液体分布器时产生压降情况不同。为此,搭建1.2 m吸收塔实验平台,基于不同液体分布器,针对气速与喷淋密度对整塔及局部内件压降的影响进行实验研究。结果表明,吸收塔中分布器、填料、集液器等部件压降都较小,绝大部分压降集中在除沫器部分;吸收塔内置管式和槽式分布器时,整塔压降随喷淋密度增大有下降的趋势,整塔压降随气速增大而变大。在1 326 m~3/h和1 329 m~3/h的气速下,整塔压降峰值分别为0.45 k Pa和0.445 k Pa。吸收塔内置新型管槽式分布器,整塔压降随喷淋密度增大基本上保持不变,整塔压降同样随气速的增大而变大,在1 350 m~3/h气速下整塔压降峰值为0.375 k Pa,相比内置管式和槽式分布器有较大的优势,且在不同喷淋密度下表现更加平稳。经计算,u=1 362 m~3/h时,吸收塔内置新型管槽式液体分布器相对于内置管式和槽式分布器的整塔压降分别降低16%和12%。  相似文献   
8.

在长12 m的无缝不锈钢直管中,通过改变初始点火能量,探究了点火能对封闭管道内丙烷-空气混合气体爆炸传播特性和激波对管壁动态加载的影响。结果表明,初始点火能对预混气体爆炸火焰传播规律以及管壁的动态响应有显著影响:点火能越大,爆炸越剧烈,爆炸压力峰值压力和管壁最大应变就越大,且压力波和管壁应变的发展一致。火焰在传播过程中受到管道末端反射波的作用会发生短暂熄灭和复燃;管壁承受冲击波加载,应变信号主要分布在0~781.25 Hz,管壁最大应变率大于10-3 s-1,实验工况下管壁应变属动态响应。

  相似文献   
9.
喷淋密度对吸收塔液体分布器分布性能的影响研究   总被引:1,自引:1,他引:0  
吸收塔液体分布器结构及喷淋密度对塔内液体分布影响很大,从而影响到吸收塔的吸收分离效果。为此,搭建直径1.2 m的吸收塔实验平台,针对管式、槽式和自己开发的新型管槽式分布器,考察不同气相进料风速下,喷淋密度对液体分布性能的影响。实验结果表明,气相进料风速对三种分布器吸收塔内液体分布情况的影响均很小。管式以及槽式分布器在较小的喷淋密度下表现较好,增大喷淋密度时,液体分布会向罐壁方向趋近,越靠近罐壁,液体分布的增长趋势越明显,但不同喷淋密度下槽式分布器的液体分布更加平稳。新型管槽式分布器在喷淋密度较大时有更好的表现,越大的喷淋密度,表现出越均匀的分布状况,对于在工业生产中喷淋密度大都大于实验时的喷淋密度,新型管槽式分布器将有更优异的表现,具有很好的规模化应用前景。  相似文献   
10.
以香蒲为原料制备生物炭(Biochar), 并用不同试剂进行活化. 活化前的Biochar比表面积和孔体积很小, 分别为1.71 m2/g和0.00421 cm3/g, 而活化后的Biochar比表面积和孔容均增大, 其中经碳酸钠(Na2CO3)活化后的Biochar比表面积和孔容最大. 研究了Na2CO3与Biochar的质量比对其活化的影响, 确定了Na2CO3/Biochar最佳质量比为3∶1条件下, 得到的样品Biochar-Na2CO3-3具有最优的表面积和孔容, 分别为624 m2/g和0.211 cm3/g, 并具有优异的挥发性有机化合物(VOCs)吸附性能, 其正己烷、 甲苯和92号汽油的静态吸附容量分别为1.03, 0.814和0.751 g/g, 正己烷和甲苯的动态吸附容量分别为1.00和0.796 g/g, 且吸附稳定性相对较高, 优于商业用活性炭(AC)和硅胶(SG).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号