首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
物理学   2篇
综合类   3篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
基于压缩感知及深度学习理论的光谱观测编码方案存在滤光器件设计与光谱重建过程复杂、设计光谱透过率难以硬件实现等问题,因此从简化光谱观测系统的思路出发,考虑常见干涉滤光器件的制造难度,提出基于对称三对角Toeplitz矩阵的光谱透过率观测编码方案;采用矩阵理论讨论光谱观测矩阵的适定性,并采用数值仿真方法研究其容差能力。理论分析结果表明,随着光谱观测矩阵规模的增大,对称三对角矩阵的条件数增长较慢,上限可控。数值仿真结果表明,采用非负最小二乘算法进行光谱重建,并在保证特定约束的情况下,增加观测矩阵的规模对对称三对角矩阵光谱观测编码方案适定性的影响较小,仍然可以保证很高的光谱测量重建准确度。  相似文献   
2.
基于宽带滤波调制的计算光谱成像技术是航空航天光谱成像遥感领域中一种极具应用潜力的新型计算光谱成像技术。目前该技术主要应用于光谱测量仪器的小型化领域,缺少针对光谱成像遥感领域的相关研究。因此,针对该技术应用于光谱成像遥感领域的可行性开展实验研究。首先简要介绍宽带滤波调制光谱成像技术的基本原理;然后针对空间光学遥感工程的实际需求,采用彩色玻璃滤光片结合工业相机搭建宽带滤波调制光谱成像的原理样机系统,并对其进行光谱成像实验验证;最后分析评价所获取的光谱图像,研究影响该技术的测量精度及其主要影响因素。实验结果表明,该技术的重建光谱准确度约为23%,获取的光谱图像边缘也较为清晰,噪声约为23 dB。  相似文献   
3.
在较温和的条件下,山梨醇和木糖醇被氢碘酸还原转化为高碳烃液体燃料。产物采用GC-MS和FT-IR进行定量分析与表征,并对高碳烃产品的理化性质进行了测定。结果表明,以山梨醇为原料制备的高碳烃产物主要是包括C12H16、C12H18、C12H20、C12H22和C18H26在内的烷烃、烯烃和芳香烃等化合物,烃类的总产率可达85.1%。以木糖醇为原料的反应过程与山梨醇相似,但所得高碳烃是以C10和C15为主的烃类化合物,产率为62.8%。实验还以质量分数为50%的山梨醇和50%的木糖醇混合物为原料制备了高碳烃,结果发现,产物中除C10、C12、C15和C18烃外,还有一定量的C11烃生成,高碳烃产率为65.4%。反应产物经碱化、旋转蒸发和减压蒸馏后分离得到纯度较高的高碳烃,其含水量低于0.2%,常温下运动黏度为3.15~3.17 mm2/s,密度为0.830~0.840 g/mL,含氧量为1.8%~2.1%,热值高于43 MJ/kg。高碳烃的生成是由于多元醇被还原过程中C-I键的极性反转和分子间C-C键的偶联导致。  相似文献   
4.
以PdCl2为催化剂、环己烷为萃取溶剂,考察各反应参数对氢碘酸还原山梨醇合成2-己烯及碘己烷的影响,并研究多种模型化合物与氢碘酸反应后的产物分布,以推断氢碘酸还原山梨醇合成2-己烯及碘己烷的反应路径.结果显示:在110℃、氢气压力4 M Pa、0.01 g PdCl2、8 mL环己烷、57%(质量分数)氢碘酸(0.12...  相似文献   
5.
具有高比表面积和低成本的活性炭是理想的超级电容器电极材料,但其作为电极材料时与金属氧化物电极相比电荷储存能力有所不足,因此通过对活性炭进行改性以提高其比电容成为研究焦点.以柚皮为碳源、硝酸铁为铁源制备柚皮活性炭/纳米Fe_2O_3复合材料,并通过系统表征研究其形态、结构和电化学性能.结果表明:引入纳米Fe_2O_3提高了活性炭的电化学性能,在电流密度为1A/g时,活性炭的比电容为159.6F/g,而复合材料的比电容增至276.0F/g;此外在对称超级电容器中,360W/kg功率密度下的复合材料获得了9.39Wh/kg的能量密度.  相似文献   
6.
以松木快速热解生物油为原料,对蒸馏得到的富含酚类馏分进行了萃取-反萃取提取酚类化合物的研究,考察了不同有机溶剂如二氯甲烷、乙酸乙酯、乙酸丁酯、正己烷、环己烷等对酚类的萃取效果.结果表明:乙酸乙酯能够有效地萃取碱化后生物油中的非酚有机物,使水相中酚类物质含量提高;而在反萃取过程中,乙酸丁酯、正己烷和石油醚对酚类的萃取选择性比其他几种萃取剂要好,其中以乙酸丁酯对酚类的萃取率最高.若采用乙酸乙酯为萃取剂,乙酸丁酯为反萃取剂,则本方法从新鲜生物油中萃取酚类的总萃取率可达59.1%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号