首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   11篇
化学   11篇
综合类   2篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
将一种新型Gemini表面活性剂,丙撑基双(十八烷基二甲基氯化铵)[C18H37(CH3)2–N+–(CH2)3–N+–(CH3)2C18H37]Cl2(C18-3-18),作为介孔模板剂用于水热法合成介孔ZSM-5分子筛.结果表明,在130 oC低温晶化即可高效合成介孔ZSM-5分子刷.C18-3-18的加入量可影响到所合成介孔ZSM-5分子筛的相对结晶度和织构性质,它的形成遵从一个转晶过程.在合成初期,凝胶中介孔模板剂C18-3-18的使用导向了介孔材料的生成;随后在TPABr的模板作用下,介孔材料慢慢转晶生成具有MFI结构的介孔ZSM-5;然后所合成的介孔ZSM-5晶粒进一步长大并聚集形成块状颗粒,同时产生晶间介孔.C18-3-18作为介孔导向剂不仅可用于合成介孔ZSM-5分子筛,也可用于其它介孔分子筛的合成中.  相似文献   
2.
针对研究Kuramoto-Sivashinsky(K-S)方程的稳态解时遇到的多数轨道快速逃逸困难,应用变分法对该混沌系统的不稳定周期轨道开展了系统计算。当静态K-S方程取很小的积分常数值时,提出利用多尺度平均微扰方法分析对应系统相空间不动点和轨道的分布情况。结果表明,小积分常数值的动力系统行为是极其复杂的,同时存在有多条异宿轨道和周期轨道;当取固定的积分常数c=0.352 1时,可以根据四条周期轨道的拓扑结构建立合适的符号动力学,从而实现对全部短周期轨道的系统搜寻。  相似文献   
3.
蒸汽裂解是石油化工行业生产低碳烯烃和芳烃的一种非常重要的手段.石脑油和一些低碳烷烃在蒸汽裂解中被广泛用作原料.经过长时间的发展和改进,蒸汽裂解技术已经有了长足的进步,但它作为一个强吸热的反应过程,需要非常高的温度才能进行,巨大的能耗是蒸汽裂解技术所要面临的最大问题.虽然催化裂解能够显著降低裂解温度到650℃左右,但若将强吸热的反应和强放热的反应进行耦合,这将是一种全新的解决能源利用率问题的途径.我们将强放热的乙酸甲酯在HZSM-5上的反应和强吸热的正己烷的裂解反应结合,使得热量得到耦合.其次,乙酸甲酯拥有碳氧双键,是一种"缺氢化合物",而正己烷作为一种"富氢"化合物,其元素组成上具有大量的氢元素.两种反应物的共同反应,除了热量耦合效应外,必将具有某种形式的元素耦合效应.在固定床反应器上考察了不同条件下乙酸甲酯和石脑油模型化合物正己烷在HZSM~(-5)上的反应,发现耦合体系中产物分布的系统性变化是显而易见的.在多数反应条件下,耦合体系中烯烃和C_5以上芳烃的选择性升高,而烷烃,H_2,CO和CO_2的选择性则明显降低,表明元素耦合效应存在于耦合体系中,且契合了"缺氢"的乙酸甲酯能够夺取"富氢"的正己烷中氢元素的特性.在Si/Al=19的HZSM~(-5)分子筛上,反应温度为300℃时,耦合体系的正己烷初始转化率达到100%,而此时正己烷单独进料体系的初始转化率只有58.9%.我们通过TPSR对两种体系的正己烷变化趋势进行考察,发现乙酸甲酯的加入会显著降低正己烷的初始裂解温度,进而促进正己烷的转化,同时加剧了正己烷的芳构化.乙酸甲酯非常高的活性导致催化剂的迅速失活,但随着正己烷的加入而得到缓解.通过GC-MS对积碳物种的分析发现,正己烷的加入改变了乙酸甲酯在分子筛上形成的积炭物种前驱体,这也为我们研究耦合体系的反应机理提供了证据.结合低温乙酸甲酯的产物分布和原位红外对三种反应体系的研究,我们提出了一种正己烷和乙酸甲酯耦合体系的反应机理.  相似文献   
4.
利用结合振荡天平的固定床微反装置,对甲醇转化的气相产物和催化剂相的有机物种沉积进行实时在线监测,由此建立程序升温过程中多相催化甲醇转化完整的碳资源走向图谱.  相似文献   
5.
苯乙烯是重要的化工中间体,可以用来生产聚苯乙烯以及其他多聚物化学品.工业上苯乙烯主要通过苯和乙烯烷基化生成乙苯,再将乙苯脱氢制得.该方法存在能耗高、工艺流程复杂、生产成本高等问题.甲苯与甲醇在碱性分子筛上可以发生侧链烷基化反应直接生成苯乙烯,在各种碱性分子筛上中, Cs离子交换的X型分子筛催化剂(CsX)表现出较为突出的催化性能.尽管如此,低的甲苯转化率和苯乙烯选择性仍然是限制甲苯甲醇侧链烷基化工艺在工业上应用的主要因素.为了进一步提高甲苯甲醇侧链烷基化反应的催化性能,向CsX催化剂中添加其他化合物或助剂的化学改性方法被广泛研究.本文采用一种物理方法—球磨法对CsX进行改性,并对比了13X分子筛在球磨前和球磨后担载Cs对甲醇甲苯侧链烷基化反应的影响.研究发现, CsX分子筛在经过球磨之后,其催化性能大幅提高.通过各种表征手段进一步阐释了球磨法在分子筛改性过程中的作用机理.CO2-TPD结果表明, Cs X在球磨之后碱量增加而碱强度降低.XPS结果显示, CsX-mill上Cs元素主要以离子型的Cs离子形式存在,而CsX上的Cs元素主要以氧化物形式存在.Cs阳离子是...  相似文献   
6.
SAPO-34催化剂上反应条件对乙烯转化制丙烯的影响   总被引:2,自引:1,他引:1  
系统研究了反应条件对SAPO-34上乙烯转化制丙烯的影响.结果表明,提高空速或加大He/C2H4稀释比有利于抑制丙烯二次反应的发生,提高丙烯的选择性.升高温度导致乙烯转化率下降,甲烷和乙烷的选择性增加;在相同转化率下,丙烯选择性随温度上升而下降.乙烯在SAPO-34上的转化反应表现出明显的诱导期,且反应条件对诱导期的长短有较大影响.  相似文献   
7.
在流化床反应条件下进行了SAPO-34催化的甲醇转化的程序升温反应,并分析了不同反应温度阶段的积碳产物.结合对反应流出物的检测结果和热分析及色质联用分析确定的积碳物种变化,解释了程序升温反应过程中甲醇转化特殊的变化趋势.在程序升温甲醇转化的积碳产物中,除芳烃外,还有一种饱和的多环烷烃积碳物种,它的生成影响了烃池活性中心的形成并引起甲醇转化在低温反应阶段的失活.甲基取代苯和甲基取代金刚烷是低温条件下SAPO-34催化的甲醇转化产生的主要积碳产物,它们在升温过程中会向甲基取代萘以及稠环芳烃转变.积碳物种的演变对应了甲醇转化在起始反应阶段(300~325oC)的反应活性升高和此后(325~350oC)的失活以及在更高温度阶段(350~400oC)活性的恢复.在反应性能评价和积碳分析基础上,首次提出了一种与金刚烷类积碳物种生成相关的低温甲醇转化的失活机理.  相似文献   
8.
低碳烯烃(乙烯、丙烯和丁烯)是重要的有机化工原料,是现代石油化工的基础,主要通过石脑油裂解和烷烃脱氢制备。现阶段我国原油对外依存度已超过60%,“多煤、缺油、少气”的能源现状决定了以煤或天然气为原料经甲醇制取石化产品成为一种重要的替代途径。甲醇制取低碳烯烃(MTO)过程成为连接煤化工和石油化工的桥梁。 ZSM-5分子筛以其高效的甲醇转化能力、优异的低碳烯烃选择性和出色的抗积碳性能成为非常理想的 MTO反应催化剂。研究发现 ZSM-5分子筛催化 MTO反应过程中,乙烯的生成规律与其它 C3–C7链状烯烃不一致,认为乙烯主要来源于芳烃缩环/扩环循环,而 C3–C7链状烯烃主要来源于烯烃甲基化/裂解循环,两种循环同时存在。本文于300°C在 ZSM-5分子筛上进行 MTO反应,通过考察不同空速(WHSV)条件下的 MTO反应性能和分析催化剂内留存物种的生成和所起的作用,研究甲醇转化机理。气相流出物种和催化剂内留存物种的分析表明, ZSM-5分子筛催化 MTO反应时遵循双循环机理——以多甲基苯和多甲基环戊二烯为主要活性物种的芳烃循环机理和以链状烯烃为主要活性物种的烯烃循环机理。在双循环机理中,芳烃循环和烯烃循环并不是简单叠加,而是相互影响,芳烃循环产生的烯烃可以作为烯烃循环的活性物种促进烯烃循环,烯烃循环中较高级的烯烃经过环化、氢转移作用,能够转化成富氢的烷烃和贫氢的芳烃、环戊二烯物种,贫氢的芳烃和环戊二烯物种又可以作为芳烃循环的主要物种促进芳烃循环的进行。氢转移反应是联系烯烃循环和芳烃循环的重要过程,与反应过程中原料甲醇与催化剂床层的接触时间有关,12C/13C甲醇切换实验揭示了双循环机理与氢转移反应的相关性,通过调变原料甲醇与催化剂床层的接触时间,可以调变氢转移反应的剧烈程度,进而对催化剂上芳烃循环和烯烃循环的甲醇转化能力产生不同的影响。当空速较低时,进料甲醇与催化剂床层的接触时间较长,有利于产物烯烃的氢转移反应,加速了分子筛催化剂上芳烃物种和环戊二烯物种的生成和累积,促进了芳烃循环,主要由芳烃循环生成的乙烯和多甲基苯的气相选择性提高;反之,当空速较高时,进料甲醇与催化剂床层的接触时间减少,产物烯烃的氢转移反应受到抑制,氢转移反应的产物——芳烃和环戊二烯物种的生成数量和累积速率降低,芳烃循环活性不高,使得烯烃循环成为甲醇转化的主要途径, C3–C7烯烃显示出更高的活性,在气相流出物种中的选择性也更高。总之,原料甲醇与催化剂床层的接触时间能够显著影响催化剂内留存物种的生成和累积,进而改变两种循环的比重。这些发现对于实现 ZSM-5分子筛催化 MTO反应过程中的产物烯烃和芳烃的选择性调控具有重要意义。  相似文献   
9.
ZSM-34分子筛的合成及其催化甲醇转化制烯烃反应性能   总被引:1,自引:0,他引:1  
以氯化胆碱为模板剂,采用水热合成法在较短的晶化时间内合成了OFF/ERI共晶体ZSM-34,考察了各种合成条件对产物的影响.通过调变合成参数可以获得不同ERI含量的ZSM-34.用X射线衍射、扫描电子显微镜和X射线荧光分析等对合成产物进行了表征.吸附实验显示,所合成的分子筛具有较大的孔容,其对正己烷的吸附容量为11.4%.HZSM-34分子筛对甲醇转化制烯烃(MTO)反应具有良好的催化活性和高的乙烯选择性,低碳烯烃(乙烯 丙烯)选择性高达86.0%,并且在反应过程中始终维持在较高的水平,不受甲醇转化率降低的影响.高温水蒸气处理后的分子筛酸性降低,大大抑制了MTO初始反应中丙烷的选择性,而初始低碳烯烃的选择性则明显提高.  相似文献   
10.
从煤、生物质或天然气出发经甲醇制烯烃正在成为最重要的非石油路线低碳烯烃和液态燃料的生产途径。基于SAPO-34和HZSM-5催化剂,甲醇制低碳烯烃(MTO),甲醇制丙烯(MTP)和甲醇制汽油(MTG)已经实现了工业化。与此同时,甲醇制烯烃反应机理也一直是学术界和工业界研究的焦点,然而由于甲醇转化机理十分复杂,且往往受多种因素的影响,使得机理研究工作至今未给出明确详尽的结论。据文献报道,在具有较大笼或交叉孔道结构的SAPO-34, SSZ-13和Hβ催化剂上,甲醇转化主要是通过烃池机理进行。烃池物种包括多甲苯及其对应的质子化产物。随着HZSM-5上甲醇转化双循环机理的提出,近期人们开始关注一维孔道分子筛上的甲醇转化反应,试图通过抑制芳烃循环使得甲醇转化主要通过烯烃甲基化裂解机理进行,发现在具有一维十元环孔道结构的HZSM-22分子筛上甲醇转化能够达到这一效果,产物主要以C3+烯烃为主,乙烯的生成较少。该催化体系的发现对于甲醇制丙烯过程的开发具有重要的意义,然而除了分子筛的拓扑结构,催化剂的酸强度对甲醇转化也具有重要的影响,值得深入研究。为此,本文采用同位素切换/共进料实验,色质谱(GC-MS),热分析(TGA)以及原位红外实验(in situ FTIR)等技术系统研究两种一维十元环结构分子筛HZSM-22和SAPO-11酸强度对于甲醇转化和催化剂失活机理的影响,为开发新型催化剂和优化反应条件以调节产物选择性提供理论指导。
  12C/13C-甲醇切换实验表明, HZSM-22和SAPO-11催化的甲醇转化机理主要是烯烃循环,然而由于酸强度的差异导致两种分子筛上甲基化反应和裂解反应对烯烃最终产物分布贡献不同。对于HZSM-22分子筛,催化活性较高,当反应温度低于400 oC时,产物以C5+高碳烃为主,随着反应温度的升高,产物以C2–C4低碳烃为主,且乙烯的增长速率高于丙烯;对于SAPO-11分子筛,催化活性较低,无论反应温度高或低,甲醇转化产物均以C5+高碳烃为主。以上结果表明,催化剂的活性与酸强度相关,且随着反应温度的升高,在酸性较强的HZSM-22分子筛上高碳烃的裂解活性要远高于酸性较弱的SAPO-11分子筛。该推论得到13C-甲醇和12C-1-丁烯共进料实验数据的支持。失活催化剂的GC-MS和TG结果显示,催化剂的失活与酸强度和反应温度密切相关:对于HZSM-22分子筛,较低温度下(<450 oC)催化剂的失活源于稠环化合物的生成和积累,高温下(>450 oC)的失活是源于分子筛表面石墨碳的沉积;对于SAPO-11分子筛,低温下(<400 oC)的失活源于稠环芳烃的生成和积累,高温下(>400 oC)的失活是源于分子筛表面石墨碳的沉积。此外,由于酸强度的差异,与SAPO-11相比,低温下积碳物种更倾向于在HZSM-22分子筛孔口快速形成。这也是HZSM-22分子筛在低温下快速失活的原因。为了进一步证明该结论,本文采用原位红外装置对HZSM-22催化甲醇转化过程中的Br?nsted酸和芳烃物种进行了连续监测。结果显示,在最初的15 min内归属为Br?nsted酸的峰(3585 cm–1)有明显的下降,但随着反应时间的延长, Br?nsted酸的量不再发生变化;与此同时,归属为芳烃物种的峰(3136 cm–1)增加到一定程度后随着反应时间的延长也几乎不再增加。这进一步说明了低温下HZSM-22分子筛的失活是由非活性芳烃积碳物种堵塞孔口造成的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号