首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   3篇
化学   3篇
综合类   6篇
  2023年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 437 毫秒
1
1.
本文分析了纳米超细粉体制备的化学沉淀法中溶液滴加法混合的缺点:胶粒生成、团聚与陈化等在时间顺序上逐渐发生而严重不同一,成为粉体颗粒分散性好、粒径均匀的障碍.本文将溶液滴加混合改为快速混合,发挥各因素同一性和优势,通过草酸共沉淀法制备成颗粒分散性好、粒径均匀、只有软团聚的纳米BaTiO3粉体,平均粒径达到28 nm.  相似文献   
2.
将含萘柴油转化为柴油发动机用燃料,使其得到充分利用并发挥最大使用价值具有重要意义。研究了添加杂醇对含萘柴油的燃烧性能影响。实验结果显示,杂醇溶解萘的能力是柴油的1.3~1.5倍,在柴油中添加杂醇可减少柴油吸收萘的使用量。萘的存在使得热值增加,但不论添加杂醇与否,热值无明显变化。添加杂醇有利于降低尾气有害物排放,提高功率输出,增加柴油发动机的扭矩,降低高转速油耗率,大幅度节约脱萘成本。  相似文献   
3.
微课是互联网迅速发展的大背景下一种新型的在线教学方式。从教学角度,对微课的主要特点和基本要求与教学实践相结合进行深入分析,以"缓冲溶液"课程微课教学为例,通过实践经验和体会来探讨微课的发展潜力与网络环境下在学校、教师和学生三方面的巨大应用前景。  相似文献   
4.
氮掺杂碳纳米管的制备及其电化学性能   总被引:2,自引:0,他引:2  
采用弱反应性含氮有机物水合肼、二乙烯三胺对碳纳米管进行氮掺杂处理. 结合X射线光电子谱(XPS)分析和扫描电镜(SEM)观察, 发现两种含氮有机物处理均可使碳纳米管表面成功连接上含氮基团, 并保持了碳纳米管的本征形貌和结构. 水合肼处理的碳纳米管的氮含量(碳/氮原子比为95/2)明显高于二乙烯三胺处理的碳纳米管(碳/氮原子比为96/0.5). 氮掺杂后碳纳米管在水溶液中分散性明显改善, 且分散性随着氮含量增加进一步增强, 因此水合肼处理的碳纳米管分散性明显优于二乙烯三胺处理的碳纳米管. 作为电化学电容器电极材料, 碳纳米管含氮官能团贡献了赝电容, 但其循环性仍需进一步改进. 氮掺杂碳纳米管较好的亲水性, 改善了电解液的浸润, 循环后氮掺杂碳纳米管电极的比容量仍略高于纯碳纳米管电极的比容量.  相似文献   
5.
以石油焦制得活性炭(AC)作为超级电容器的电极材料,在此AC中分别加入5%多壁碳纳米管(MW-CNTs)或5%氧化石墨(GO),借助氮吸附分析仪、循环伏安测试(CV)和电化学交流阻抗谱分析(EIS),比较MW-CNTs与GO对改进AC电化学性能作用影响.实验结果显示:MWCNTs和GO的吸附等温线具有多段特征,而AC呈现含丰富中孔的微孔炭特征.CV测试显示,在低扫描速率下,加入MWCNTs和GO可使响应电流略有增加.EIS揭示加入MWCNTs和GO可提高AC电极的导电性、频率响应和快速充放电性能,同时提高AC电极的的充放电容量.倍率放电性能和1 000次循环测试也表明加入MWCNTs和GO可提高AC电极的放电容量.  相似文献   
6.
7.
为了研究不同孔径的有序介孔碳(OMC)作为超级电容器电极的性能差异,本文采用水热合成法制备三种不同孔径的介孔二氧化硅分子筛(SBA-15),再以SBA-15为模板,乙炔为碳源,利用化学气相沉积法(CVD)反向制备具有不同孔径的OMC。利用扫描电子显微镜、氮气吸附和电化学测试等,分析OMC作为电极材料时,其纳米孔结构与性能之间的关系。结果表明,将孔径调控在3~4 nm的OMC-120作为超级电容器电极,在充放电电流密度为0.10 A/g和0.50 A/g时,比电容为44.50 F/g和54.30 F/g;经1 000次循环后电容保持率达99%,其双电层电容性能和稳定性优于其他孔径结构的样品,这归因于OMC-120中较窄的有序介孔结构加速了电子和离子的转移交换,缩短离子的传输路径。  相似文献   
8.
利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管(CNTs), 再炭化处理制备氮掺杂碳纳米管(NCNTs).激光拉曼(Raman)光谱和X射线光电子谱(XPS)分析及透射电镜(TEM)观察表明, 苯胺包覆碳纳米管经炭化处理后, 得到以碳纳米管为核、氮掺杂碳层为壳, 具有核-壳结构的氮掺杂碳纳米管, 而碳纳米管本征结构未遭破坏. 研究表明, 随着苯胺用量的增大, 氮掺杂碳纳米管的氮掺杂碳层变厚, 氮含量从7.06%(质量分数)增加到8.64%, 而作为超级电容器电极材料, 随着氮掺杂碳层厚度降低, 氮掺杂碳纳米管在6 mol·L-1氢氧化钾电解液中的比容量从107 F·g-1增大到205 F·g-1, 远高于原始碳纳米管10 F·g-1的比容量, 且聚苯胺改性氮掺杂碳纳米管表现出较好的充放电循环性, 经1000次充放电循环后仍保持初始容量的92.8%~97.1%, 表明氮掺杂碳纳米管不仅通过表面氮杂原子引入大的法拉第电容和改善亲水性使电容量显著增大, 其具有的核壳结构特征也使循环稳定性增强。  相似文献   
9.
利用化学原位聚合法制备聚吡咯包覆碳纳米管, 然后以硫酸亚铁铵盐为铁前驱体, 采用液相沉淀法制备聚吡咯-碳纳米管-铁化合物复合材料(Fe-PPy-CNTs), 通过对复合材料Fe-PPy-CNTs 热处理, 成功制备出铁基氮掺杂碳纳米管催化剂FeNCNTs. X射线衍射分析表明, 热处理使Fe-PPy-CNTs 复合物中Fe3O4向Fe3N和Fe转化, 700 ℃热处理制备的FeNCNT700中铁主要是Fe3O4相, 但也有Fe相. 800和900 ℃热处理制备的催化剂FeNCNT800和FeNCNT900则明显有Fe3N和Fe形成. 随着热处理温度升高, FeNCNTs 催化剂氮含量降低, 其含氮官能团也由吡咯型氮向吡啶型和石墨型氮转化. 电化学分析表明, 含有Fe3N 的FeNCNT800 和FeNCNT900催化剂具有明显的氧还原催化活性, 其中, FeNCNT800因其具有高的比表面积、高的氮含量和高比例的有利于增强氧吸附能力和弱化O―O键的石墨氮官能团, 而表现出优于FeNCNT900氧还原催化活性及稳定性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号