首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   3篇
综合类   3篇
  2024年   1篇
  2023年   1篇
  2020年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 17 毫秒
1
1.
本文建立了有压腔式太阳能吸热器(PVSR)轴对称计算模型,运用蒙特卡罗光线追踪法(MCRT)模拟了二次聚光器(SC)与有压腔式吸热器(PVR)系统内聚光过程与光热转换过程,进而与计算流体与传热的有限容积方法(FVM)结合研究了高温高压吸热器内复杂耦合传热过程.在此基础上,进一步对比考察了考虑不同换热过程的换热机理,分析...  相似文献   
2.
膨胀土是具有流变性质的灾害性土,其蠕变行为直接影响到工程结构的稳定性和安全性。为探究剑麻纤维加筋膨胀土的蠕变特性及应力-应变数学模型,采用室内固结排水三轴蠕变试验,分别进行了不同含水率、不同围压和不同偏应力条件下素膨胀土和剑麻纤维加筋膨胀土的蠕变特性研究,根据蠕变特征曲线提出了基于Mesri蠕变经验模型的剑麻纤维加筋膨胀土的修正蠕变模型。结果表明:相同条件下,剑麻纤维加筋土的蠕变变形量明显小于素土的蠕变变形量,说明掺入剑麻纤维可有效提高膨胀土的结构性能和抗变形能力;素土和剑麻纤维加筋土的蠕变变形量随含水率增大而增大,而随围压的增大呈减小趋势;素土和剑麻纤维加筋土在受到偏应力时均会产生瞬时应变量和蠕变变形量,其蠕变变形量随偏应力的增大而增大;素土和加筋土的蠕变曲线分4个阶段,分别为弹性变形阶段、稳态蠕变阶段、衰减蠕变阶段和加速蠕变阶段;高偏应力下,基于传统Mesri蠕变经验模型的剑麻纤维加筋土蠕变预测误差高达37.95%,对Mesri蠕变经验模型进行修正后预测误差降至1.5%内,说明修正模型能较好地描述剑麻纤维加筋土的蠕变特性。此研究结果可为膨胀土工程提供理论参考。  相似文献   
3.
采用自编程的蒙特卡罗光线追迹程序模拟了太阳辐射在吸热器中的传播过程,计算求得了吸热体内的热流密度分布情况。由随机光于的传播特性可知,不同的系统参数会对吸热体内辐射分布产生影响。根据太阳辐射在吸热器中的传播顺序,本文依次考察了入射光倾角、多孔介质的几何形状以及厚度、吸收系数与消光系数比值(μ_a/μ_t)以及孔隙率(ε)等因素对SiC泡沫金属吸热体内吸收辐射分布的影响。计算结果表明入射光倾角和吸热体的几何形状是影响吸热体内热流分布均匀性的主要因素,且随着μ_a/μ_t比值的降低和ε的增加,吸热体内热流密度极值迅速减小,同时厚度方向的热流密度梯度变缓。本文的研究结果可以为太阳能吸热器的结构设计和材料选择提供参考。  相似文献   
4.
新型线聚焦菲涅耳透镜设计及其聚光特性研究   总被引:1,自引:0,他引:1  
聚光光伏系统中电池表面热流密度分布不均匀导致系统光电转换效率降低,同时出现局部过热问题,严重影响了光伏电池系统的效率。为了解决这一问题,本文设计了一种可以使太阳投射辐射能量均匀化分布于接收面的新型线聚焦菲涅耳透镜,并运用蒙特卡罗光线追迹法对常见的菲涅耳透镜及本文设计新型线聚焦菲涅耳透镜的聚光特性进行了对比研究。模拟结果表明,新型透镜极大地改善了电池表面热流分布的均匀性。针对新型透镜聚光特性,考察了不同设计接受面宽度、太阳光不平行灾角、入射光束波长、入射光倾角及电池位置等因素对电池表面热流密度分布的影响。  相似文献   
5.
为揭示京新高速伊吾至巴里坤段长时序温度差异诱发工程病害的风险特征,通过对巴里坤地温监测断面年际监测数据进行分析获取了路面结构层温度分布特征,并通过数值方法反演了路面结构层温度与沥青路面温度的定量关系,研究了高温车辙、温度疲劳裂缝和温缩裂缝等温变型病害的时间演化规律,结果表明:该路段路面最高温度超过50 ℃以上情况仅发生于6、7月份,且概率较低,故研究区域发生高温车辙的病害风险较低;6 ~ 9月高温季节路面及沥青上面层日较差超过20 ℃的天数比率分别为51.9 %和35.3 %,故该路段沥青层出现温度疲劳裂缝的可能性较大;冷季半刚性基层持续处于低温状态,尤以2 ~ 3月期间温度变化最为剧烈,温度变化幅度达到了12.4 ℃,因此该路段冬季发生温缩裂缝的风险较大。  相似文献   
6.
为揭示气候温升背景下青藏工程走廊带多年冻土热融蚀敏感性分布规律,基于现有地温分布、活动层厚度的野外监测数据建立了二者与热融蚀敏感性之间的多元回归模型,并采用开放系统地气耦合模型对2016年以后气候温升模式下多年冻土年平均地温和活动层厚度变化进行数值研究,进而获得未来20 a和50 a青藏工程走廊带多年冻土热融蚀敏感性分布预测图.研究结果表明,走廊带内冻土年平均地温越低,受气候温升的影响越大,而活动层厚度则随地温和气温的升高而增大,年平均气温-5.5℃工况下,其年平均地温和活动层厚度增幅分别为0.015 4℃/a和0.86 cm/a;融区和高温冻土区主要分布在走廊带沿线的河流、谷地和盆地等区域,且随着气温的逐年增加,预计2066年低温冻土区域比例将减少52.1%,高温冻土区域和融区面积比例总计将增加74.7%;走廊带内多年冻土的热融蚀敏感性将大幅增加,且极敏感型冻土的增加比例将随时间而加速增长,到那时极敏感型冻土比例将增长1倍以上,敏感型和极敏感型冻土将占整个走廊带内多年冻土区的78%以上.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号