首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   9篇
化学   14篇
综合类   11篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1997年   1篇
  1996年   4篇
排序方式: 共有25条查询结果,搜索用时 265 毫秒
1.
本文采用溶剂热、原位聚合和真空抽滤相结合的方法制备了用于超级电容器的细菌纤维素/镍钴硫化物/聚吡咯(BC/CoNi2S4@PPy)柔性电极材料,通过X 射线衍射、场发射扫描电镜、红外光谱、氮气吸脱附、拉伸强度和接触角表征了材料的形貌结构、组成、机械性能和亲水性,并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能....  相似文献   
2.
在生物柴油生产过程中大量副产的甘油是重要的生物质转化平台化合物.通过甘油氢解制备高附加值的1,3-丙二醇是甘油的资源化利用的重要途径,能够显著提高生物柴油产业的经济效益,同时也是探究更复杂的糖醇类化合物氢解的模型反应.因此,甘油氢解制备1,3-丙二醇成为当前学术界的研究热点.通常,以Re或W为助剂修饰的贵金属催化剂是有效的甘油选择性氢解制1,3-丙二醇的催化剂,其中,双金属Ir-Re催化剂是目前最高效的催化剂之一.甘油氢解反应是典型的结构敏感性反应,它的催化性能依赖于双金属催化剂的结构,而后者受制备工艺条件如热处理方式及条件的影响.最近,我们报道了以直接还原法(即浸渍-还原法)制备的Ir-Re催化剂为合金结构,在甘油氢解中表现出更为优越的反应活性及目前报道中最高的1,3-丙二醇生成速率,并提出了可能的双功能反应机理,即催化剂表面的Re-OH酸性位和Ir均为甘油氢解的活性位.本文采用直接还原法制备KIT-6(具有三维有序介孔孔道结构的SiO2)负载的双金属Ir-Re催化剂,进一步研究还原温度对Ir-Re/KIT-6的结构及其催化性能的影响,揭示催化剂表面酸性在甘油氢解反应中的重要作用并阐明其构-效关系.结果显示不同还原温度(400–700 oC)制备的催化剂的比表面积、孔体积及孔径数据基本一致,表明还原温度对Ir-Re/KIT-6的织构性质的影响很小.根据程序升温还原和透射电镜-能量散射点扫描结果可知,不同温度还原后的催化剂表面Ir和Re均以金属态形式存在,同时两者存在直接的相互作用,形成了Ir-Re合金;而漫反射红外图谱上CO吸附峰的红移以及峰形的显著变化也印证了Ir-Re合金结构的形成. TEM结果显示,在400–700oC还原后得到的Ir-Re合金纳米粒子均匀分布于KIT-6上,尺寸基本一致(2.5–2.8 nm),与CO化学吸附结果一致.此外, NH3-程序升温脱附结果表明催化剂的酸量随着还原温度的升高而逐渐增大,但酸强度没有明显变化,这可能是由于高温还原进一步促进了Ir和Re的相互作用,在原子尺度上混合更为均匀所致. Ir-Re催化剂上甘油氢解反应结果显示,随着还原温度由400提高到600 oC,所制催化剂的活性先增加而后趋于稳定.由此可以认为Ir-Re催化性能的差异与Ir分散度和酸强度的关联较小,主要是由于催化剂表面酸量所致.直接关联酸量与反应活性(以反应时间内的平均1,3-丙二醇生成速率表示)可以看到,反应活性随着酸量的增加而线性增大,表明Ir-Re/KIT-6的表面酸量直接影响了甘油氢解反应速率的快慢,即酸位Re-OH直接参与了催化反应.众所周知, Re金属活化H2的能力很弱,而金属Ir在反应中起到催化加氢的作用.实验结果很好地印证了Ir-Re合金催化甘油氢解反应的双功能反应机理,即酸位Re-OH与金属Ir协同参与氢解反应,分别作为甘油吸附位和H2活化中心,因此提高催化剂的表面Re-OH的数量将是进一步提高催化活性的途径之一.总的来说,在400–700 oC还原得到的Ir-Re/KIT-6催化剂具有Ir-Re合金结构.还原温度对催化剂的织构性质、金属纳米粒子的尺寸、Ir的分散度及表面酸强度的影响不大,但还原温度的升高有利于Ir和Re的相互作用,显著提高了催化剂的表面酸量,因而提高催化活性.此外,表面酸量和反应活性的线性关系表明酸位Re-OH参与Ir-Re合金催化甘油氢解反应,印证了双功能反应机理.  相似文献   
3.
对钯碳催化剂(Pd/AC)上对苯二甲酸(TA)加氢精制过程进行了研究,结合反应体系的热力学分析,对该体系中的反应历程、反应特性进行了探讨,并对工业过程进行取样分析验证实验结果。结果表明:加氢精制工艺过程主要发生了两类反应,即加氢反应和脱羰反应,但脱羰反应的并存并未从本质上影响最终精制目的,即降低TA中对羧基苯甲醛(4-CBA)的含量。加氢反应是一个串联反应,即先由4-CBA加氢生成对羟甲基苯甲酸(4-HM BA),反应速率非常快,而后4-HM BA进一步加氢生成对甲基苯甲酸(4-PT),相对速率较慢;脱羰反应的进行程度与反应体系中存在的微量氧密切相关,溶解的微量氧对脱羰反应有促进作用,而氢气则会抑制脱羰反应。  相似文献   
4.
周静红  刘红月 《科技资讯》2012,(10):235-235
在高职教育发展迅速的形势下,对高职学生党建工作提出了新要求、新挑战,创新性地开展高职学生党建活动是党务工作者义不容辞的责任。本文通过对健雄职业技术学院学生党建活动的经验总结和存在问题的原因分析,提出了开展高职学生党建活动的对策和建议。  相似文献   
5.
不久前,老师组织了一次非常有意义的跳蚤市场活动。同学们一听到消息就踊跃报名,两人一组,准备小商品,并决定把卖东西得的钱全捐给贫困地区的小朋友。活动当天,我和搭档诗语一大早就来到跳蚤市场,找到自己的摊位,将物品一一摆放整齐。我们准备了精美的图书和笔记本,还亲手制作了可口的饼干供顾客品尝。瞧,其他同学的商品也琳琅满目:用树叶制成的日历、用彩纸折成的飞机和蝴蝶、自制的彩灯……  相似文献   
6.
高浓度亚硫酸铵氧化反应过程研究   总被引:9,自引:0,他引:9  
通过填料塔对亚硫酸铵氧化过程各影响因素进行了全面的研究。反应温度 30°C~ 75°C,氧气体积分数 φO2 =0 .2 1~ 1 ,亚硫酸根浓度 0 .3mol/L~ 5.0 mol/L,初始硫酸根浓度 0~ 1 .5mol/L,催化剂有铜、铁、钴、锌、锰的硫酸盐。实验结果表明 :在高浓度 ( [SO2 -3 ]>0 .5mol/L)下 ,亚硫酸铵的氧化速率随亚硫酸根浓度的增加而降低 ,硫酸根浓度的增加也使亚硫酸铵的氧化速率下降。因此 ,高浓度的亚硫酸铵不能被迅速完全地直接氧化成硫铵 ,要在较低浓度下氧化后再浓缩 ,该工艺过程的操作费用较高  相似文献   
7.
在文题研究中,对反应体系的pH值、反应物浓度、反应温度对合成颜料的色相和光泽等外观表现及微观结构的影响规律作了一定的工作。结果表明,较优的工艺条件:pH为0.5~1.2,铁盐浓度u,为0.03~0.07,温度为75~90℃。通过XRD研究表明,包覆在云母表面的水合二氧化钛膜层的粒子呈不明显的锐钛相微晶结构。制得的不同粒度、不同色相的云母钛具有较强的的珠光效果及明显的色调。  相似文献   
8.
Ru/CNFs 催化剂催化氨分解制氢   总被引:1,自引:0,他引:1  
 研究了鱼骨式碳纤维 (CNFs) 和管式碳纤维 (CNTs) 负载 Ru 催化剂的氨分解反应活性. 结果表明, Ru/CNFs 催化剂上氨分解活性高于 Ru/CNTs 催化剂. 通过改变 Ru 负载量或载体表面的含氧基团来调节 Ru 的粒径. Ru 的活性位随着 Ru 颗粒尺寸的增大而增加. CNFs 上的含氧基团对 Ru 颗粒的氨分解活性影响很大. 在相同粒径的 Ru 颗粒上, CNFs 表面的含氧基团增加了 Ru 的活性.  相似文献   
9.
 采用化学气相沉积法制备了具有不同微观结构的纳米碳纤维,并用丙烷程序升温吸脱附和热重实验对纳米碳纤维进行了表征,考察了纳米碳纤维在丙烷氧化脱氢反应中的催化性能. 结果表明,纳米碳纤维表面的含氧基团可能是催化活性中心; 纳米碳纤维不仅具有较好的催化性能,而且在反应条件下具有较高的热稳定性. 在550 ℃下,鱼骨式纳米碳纤维上丙烷转化率为44.9%时,丙烯选择性为33.0%,其催化性能与V-Mg-O等金属氧化物催化剂相当. 不同微观结构纳米碳纤维的催化性能相差较大,这是由于其表面化学性质不同所致.  相似文献   
10.
利用密度泛函理论对Cu(111)及Cu2O(111)表面上草酸二甲酯加氢副产物1,2-丙二醇(1,2-PDO)的生成机理进行了探究,计算了两种表面上1,2-PDO生成的不同反应路径基元步骤的热力学数据以及所涉及物种的吸附行为,进行了局域态密度以及差分电荷密度分析,阐明了铜催化剂的主要活性位点及1,2-PDO生成的主要路径。结果表明,1,2-PDO主要由乙二醇和甲醇于Cu2O(111)表面通过Guerbet醇缩合反应生成,具体包括醇脱氢、羟醛缩合以及不饱和醛加氢三个过程。Cu2O(111)表面Cuus+及Osuf-位点形成的Lewis酸碱对能够促进反应物、产物及反应中间体的吸附且对于1,2-PDO生成过程的整体催化活性更高。Cu2O(111)表面的Osuf-位点是醇类脱氢生成醛、羟醛缩合过程中生成烯醇物种以及不饱和醛类中间体加氢的主要活性中心,而C-C偶联反应则发生在Cu...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号