首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
无线电   1篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.  相似文献   
2.
Proliferation and migration of keratinocytes and fibroblasts play an important role in cutaneous wound healing, while oral mucosal squamous cell proliferation and migration are crucial for oral wound healing. In this study, the phytochemical profile of Pluchea indica branch ethanolic extract was characterized. The bioactive compound of Pluchea indica branch ethanolic extract was identified and analyzed by the validated HPLC method. The nanoparticles of P. indica branch extract were formulated by solvent displacement method to increase the solubility and the colloidal stability of the extract. The stability of the nanoparticles was investigated by using the dynamic light scattering technique. Effects of P. indica crude extract and nanoparticles on cell viability, proliferation and migration of primary epidermal keratinocytes, human dermal fibroblasts, and oral mucosal keratinocyte cells were investigated by MTT assay and scratch assay, respectively. The results showed that P. indica branch extract contained a high content of total phenolic and total flavonoids. The HPLC analysis revealed that the main compound in the extract was 4,5-O-dicaffeoylquinic acid. The cell viability of the extract and nanoparticles decreased when cells were exposed to a high concentration of extract and nanoparticles. These results demonstrate that P. indica branch extract and extract nanoparticles at specific concentrations possess in vitro wound healing activity and they may be possibly used to treat different types of wounds including dermal and oral mucosal wounds.  相似文献   
3.
The future of green electronics possessing great strength and toughness proves to be a promising area of research in this technologically advanced society. This work develops the first fully bendable and malleable toughened polylactic acid (PLA) green composite by incorporating a multifunctional polyhydroxybutyrate rubber copolymer filler that acts as an effective nucleating agent to accelerate PLA crystallization and performs as a dynamic plasticizer to generate massive polymer chain movement. The resultant biocomposite exhibits a 24‐fold and 15‐fold increment in both elongation and toughness, respectively, while retaining its elastic modulus at >3 GPa. Mechanism studies show the toughening effect is due to an amalgamation of massive shear yielding, crazing, and nanocavitation in the highly dense PLA matrix. Uniquely distinguished from the typical flexible polymer that stretches and recovers, this biocomposite is the first report of PLA that can be “bend, twist, turn, and fold” at room temperature and exhibit excellent mechanical robustness even after a 180° bend, attributes to the highly interconnected polymer network of innumerable nanocavitation complemented with an extensively unified fibrillar bridge. This unique trait certainly opens up a new horizon to future sustainable green electronics development.  相似文献   
4.
Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.  相似文献   
5.
An iron‐containing mesoporous molecular sieve, or Fe‐MCM‐41, was successfully synthesized the via sol–gel technique using silatrane and FeCl3 as the silicon and iron sources, and was characterized using various techniques. Many factors were investigated, namely, reaction temperature and time, calcination rate, and iron amount in the reaction mixture. It was found that the optimum conditions in which to synthesize Fe‐MCM‐41 was to carry out the reaction at 60 °C for 7 h using a 1 °C min?1 calcination rate and a 550 °C calcination temperature. The catalytic activity and selectivity of styrene epoxidation using hydrogen peroxide showed that the selectivity of the styrene oxide reached 65% at a styrene conversion of 22% over the 1%wt catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Chemical modification of zeolite beta (BEA) with a series of organosilane compounds [R(CH3)nSiX(3‐n), where X is a chloro or alkoxy group with n = 0 and 2, and R is an alkyl chain varying from CH3 to C18H37] was investigated. The results of FT‐IR and 29Si CP/MAS NMR indicated that the alkylsilyl species were covalently anchored onto the BEA surface. Grafting density of the alkylsilyl species was determined by CHN elemental analysis and thermogravimetric analysis (TGA). Evidently, it can be adjusted by varying the reaction time and organosilane concentration. The reaction kinetics was found to resemble the kinetics of the well‐known monolayer formation, i.e. SAMs. The kinetic plot illustrated two distinct regions, a rapid attachment followed by a gradual increase of grafting density. The degradation temperature at maximum rate (Tmax) of the surface‐grafted BEA was observed in the range of 440–460°C. The modified BEA showed surface hydrophobic characteristic by having a strong affinity to the non‐polar n‐heptane. Good particle distribution and strong interfacial adhesion were observed in the mixed matrix membranes of the BEA grafted with C3H7 to C18H37. The grafted chain length was found to have an effect on gas permeability. Carbon dioxide, oxygen, and ethylene permeabilities of the membranes containing the unmodified BEA were comparable to those of the CH3Si‐grafted BEA. Interestingly, the membranes containing the BEA grafted with C3H7 to C18H37 species showed enhancement of the carbon dioxide permeability. Affinity of the long alkyl chain to carbon dioxide probably caused the increase of carbon dioxide permeability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
7.
Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10–50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work.  相似文献   
8.
Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on the regulation of SRD5A mRNA expression and anti-sebum efficacy. This study extracted A. racemosus using the supercritical carbon dioxide fluid technique with ethanol and investigated its biological compounds and activities. The A. racemosus root extract had a high content of polyphenolic compounds, including quercetin, naringenin, and p-coumaric acid, and DPPH scavenging activity comparable to that of the standard L-ascorbic acid. A. racemosus root extract showed not only a significant reduction in SRD5A1 and SRD5A2 mRNA expression by about 45.45% and 90.86%, respectively, but also a reduction in the in vivo anti-sebum efficacy in male volunteers, with significantly superior percentage changes in facial sebum production and a reduction in the percentages of pore area after 15 and 30 days of treatment. It can be concluded that A. racemosus root extract with a high content of polyphenol compounds, great antioxidant effects, promising downregulation of SRD5A1 and SRD5A2, and predominant facial sebum reduction and pore-minimizing efficacy could be a candidate for an anti-sebum and pore-minimizing active ingredient to serve in functional cosmetic applications.  相似文献   
9.
Terpenes are the primary constituents of essential oils and are responsible for the aroma characteristics of cannabis. Together with the cannabinoids, terpenes illustrate synergic and/or entourage effect and their interactions have only been speculated in for the last few decades. Hundreds of terpenes are identified that allude to cannabis sensory attributes, contributing largely to the consumer’s experiences and market price. They also enhance many therapeutic benefits, especially as aromatherapy. To shed light on the importance of terpenes in the cannabis industry, the purpose of this review is to morphologically describe sources of cannabis terpenes and to explain the biosynthesis and diversity of terpene profiles in different cannabis chemovars.  相似文献   
10.
This study investigated the effect of chitosan particle sizes on the properties of carboxymethyl chitosan (CMCh) powders and films. Chitosan powders with different particle sizes (75, 125, 250, 450 and 850 µm) were used to synthesize the CMCh powders. The yield, degree of substitution (DS), and water solubility of the CMCh powders were then determined. The CMCh films prepared with CMCh based on chitosan with different particle sizes were fabricated by a solution casting technique. The water solubility, mechanical properties, and water vapor transmission rate (WVTR) of the CMCh films were measured. As the chitosan particle size decreased, the yield, DS, and water solubility of the synthesized CMCh powders increased. The increase in water solubility was due to an increase in the polarity of the CMCh powder, from a higher conversion of chitosan into CMCh. In addition, the higher conversion of chitosan was also related to a higher surface area in the substitution reaction provided by chitosan powder with a smaller particle size. As the particle size of chitosan decreased, the tensile strength, elongation at break, and WVTR of the CMCh films increased. This study demonstrated that a greater improvement in water solubility of the CMCh powders and films can be achieved by using chitosan powder with a smaller size.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号