首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
无线电   8篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 843 毫秒
1
1.
Peak-to-average power ratio (PAPR) is one of the main drawbacks in orthogonal frequency division multiplexing (OFDM) systems. High PAPR forces the power amplifier to back off in order to operate in its linear region, which degrades the power efficiency of the system. Several PAPR reduction techniques have been developed, but most of them have not considered both complexity and PAPR reduction. In this paper, a novel PAPR reduction scheme based on the insertion of dummy sequences to an enhanced partial transmit sequence is proposed. By applying this scheme the PAPR performance is enhanced compared to the conventional methods while the complexity is significantly reduced. Numerical analysis is carried out with OFDM signal and QPSK modulation.  相似文献   
2.
In this paper the peak to average power ratio (PAPR) reduction and digital predistortion effects in orthogonal frequency division multiplexing (OFDM) systems are investigated. By applying a predistortion technique called complex gain memory predistortion (CGMP), power amplifier works at higher power efficiency. The proposed enhanced partial transmit sequence scheme is applied for PAPR reduction and integration with CGMP technique results in increasing in OFDM system efficiency and prolonged battery life. Simulation and results are examined with actual power amplifier and OFDM signal with quadrature phase shift keying (QPSK) modulation.  相似文献   
3.
In this paper, the effects of peak‐to‐average power ratio reduction in nonlinear power amplifiers (PAs) by considering memory effects and of digital predistortion are investigated. A new predistortion technique is proposed, which is called the complex gain memory predistortion (CGMP) method. The CGMP is applied to compensate the dynamic memory effects of PAs. The conventional partial transmit sequence method is applied for peak‐to‐average power ratio reduction, and combining it with the CGMP results in efficiency enhancement and spectrum efficiency improvement. Simulation and results are examined with the two types of PAs and with an OFDM signal with quadrature phase‐shift keying modulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
In this paper, we propose a novel technique to reduce the crest factor (CF) in orthogonal frequency division multiplexing systems. It consists of two inverse fast Fourier transform (IFFT) blocks, the input symbols of the first IFFT are the mapped symbols, whereas the input symbols of the second IFFT are the summations of the absolute value of the real part of the outer signal constellation points and zero symbols. First, the output of the two IFFT blocks is partitioned into four subblocks, which are subsequently used to rearrange the subblocks with padding zeros in a specific manner. Then, a new optimization scheme is introduced, in which only a single two-phase sequence and four iterations need to be applied. Numerical analysis shows that the proposed hybrid technique achieves better CF reduction performance with significantly lower complexity and better bit error rate performance than the existing scrambling (multiplicative) and additive CF techniques.  相似文献   
5.
Wireless Personal Communications - Recent development in communications have increased the demand of internet protocol (IP)-based multimedia conferencing services. Session initiation protocol (SIP)...  相似文献   
6.
Because of its lack of feedback process and the simplicity of its searching algorithm, conventional selected mapping (CSLM) is an efficient peak-to-average power ratio (PAPR) reduction technique in orthogonal frequency division multiplexing systems compared to the present techniques such as partial transmit sequence and active constellation extension. The requirement for large numbers of inverse fast Fourier transform (IFFT) blocks to provide desired PAPR reduction performance is introduced as the most significant drawback of the CSLM. This paper uses the special structure of an N-point radix-II IFFT in the CSLM and proposes a low complexity method to reduce the redundant calculations with almost the same PAPR reduction, bit-error rate, and power spectral density performances as those of the CSLM. The simulation results show that the computational complexity is reduced by at least 46.8% compared to that of the CSLM with approximately the same PAPR performance.  相似文献   
7.
One of the effective methods used for reducing peak‐to‐average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems is selected mapping (SLM). In this paper, a new SLM scheme called DSI‐SLM, which is a combination of dummy sequence insertion (DSI) and conventional selected mapping (C‐SLM) is proposed. Previous techniques have had some drawbacks. In DSI, increasing the number of dummy sequences to have better PAPR degrades transmission efficiency, and in C‐SLM, the complexity rises dramatically when the number of sub‐blocks increases. The proposed DSI‐SLM scheme significantly reduces the complexity because of the reduction in the number of sub‐blocks compared with the C‐SLM technique while its PAPR performance is even better. To enhance the efficiency of the OFDM system and suppress the out‐of‐band distortion from the power amplifier nonlinearity, a digital predistortion technique is applied to the DSI‐SLM scheme. Simulations are carried out with the actual power amplifier model and the OFDM signal based on the worldwide interoperability for microwave access standard and quadrature phase‐shift keying modulation. The simulation results show improvement in PAPR reduction and complexity, whereas the BER performance is slightly worse. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号