首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   11篇
化学   67篇
晶体学   1篇
力学   3篇
数学   5篇
物理学   38篇
无线电   29篇
  2022年   2篇
  2021年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   3篇
  2012年   10篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2001年   3篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1991年   4篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
  1961年   1篇
  1955年   1篇
  1943年   1篇
  1937年   2篇
  1936年   1篇
  1902年   2篇
  1901年   1篇
排序方式: 共有143条查询结果,搜索用时 10 毫秒
1.
2.
3.

We introduce a novel algorithm for online estimation of Acoustic Impulse Responses (AIRs) which allows for fast convergence by exploiting prior knowledge about the fundamental structure of AIRs. The proposed method assumes that the variability of AIRs of an acoustic scene is confined to a low-dimensional manifold which is embedded in a high-dimensional space of possible AIR estimates. We discuss various approaches which exploit a training data set of AIRs, e.g., high-accuracy AIR estimates from the acoustic scene, to learn a local affine subspace approximation of the AIR manifold. The model is motivated by the idea of describing the generally nonlinear AIR manifold locally by tangential hyperplanes and its validity is verified for simulated data. Subsequently, we describe how the manifold assumption can be used to enhance online AIR estimates by projecting them onto an adaptively estimated subspace. Motivated by the assumption of manifolds being locally Euclidean, the parameters determining the adaptive subspace are learned from the nearest neighbor AIR training samples to the current AIR estimate. To assess the proximity of training data AIRs to the current AIR estimate, we introduce a probabilistic extension of the Euclidean distance which improves the performance for applications with non-white excitation signals. Furthermore, we describe how model imperfections can be tackled by a soft projection of the AIR estimates. The proposed algorithm exhibits significantly faster convergence properties in comparison to a high-performance state-of-the-art algorithm. Furthermore, we show an improved steady-state performance for speech-excited system identification scenarios suffering from high-level interfering noise and nonunique solutions.

  相似文献   
4.
Gaseous Acetates Thermoanalytical and mass-spectrometrical observations are undertaken with some acetates and oxiacetates. The volatilization of copper(I) acetate takes place like that of the silver acetate as M2Ac2+ (besides the deposition of Ag). On the volatilization of the anhydrous compounds Cu2Ac4, Cr2Ac4, Rh2Ac4, and Mo2Ac4 in the vacuum of a mass spectrometer is observed that Cu2Ac4 vaporizes dissociative as Cu2Ac2+ (+ 2 “Ac”), while the other compounds vaporize as M2Ac4+ and simultaneously is formed an oxidic (e.g. Cr2O4) or metallic residue. PdAc2 vaporizes in the mass spectrometer as a trimeric molecule Pd3Ac6. M4OAc6, which is formed from the dihydrates, vaporizes in a mass spectrometer with M ? Co, Mn as M4OAc6+. Other complexes of the same type appear as Be4OAc5+, Mg4OAc5+, and Zn4OAc5+.  相似文献   
5.
A liquid chromatographic/tandem mass spectrometric method was developed and validated for the quantitation of capecitabine and its metabolite 5-fluorouracil in human plasma. The simultaneous determination of both analytes was achieved by a column switching method using a trapping column and two analytical columns with different stationary phases. Isocratic elution was used for the separation of capecitabine on a C18 column whereas 5-fluorouracil was separated using gradient elution on an non-polar carbon phase. The calibration curves were linear for both compounds with a correlation factor (R2) > 0.9993 for 5-fluorouracil and >0.9942 for capecitabine. The assay was validated in the concentration range 5.00-1000 ng ml(-1) for both compounds. The intra-day precision was better than 10% for 5-fluorouracil and better than 11% for capecitabine whereas the inter-day precision was better than 8% for 5-fluorouracil and better than 14% for capecitabine.  相似文献   
6.
Different virtual screening techniques are available as alternatives to high throughput screening. These different techniques have been rarely used together on the same target. We had the opportunity to do so in order to discover novel blockers of the voltage-dependent potassium channel Kv1.5, a potential target for the treatment of atrial fibrillation. Our corporate database was searched, using a protein-based pharmacophore, derived from a homology model, as query. As a result, 244 molecules were screened in vitro, 19 of them (7.8%) were found to be active. Five of them, belonging to five different chemical classes, exhibited IC50 values under 10 microM. The performance of this structure-based virtual screening protocol has been compared with those of similarity and ligand-based pharmacophore searches. The analysis of the results supports the conventional wisdom of using as many virtual screening techniques as possible in order to maximize the chance of finding as many chemotypes as possible.  相似文献   
7.
The Perthioborates RbBS3, TIBS3, and Tl3B3S10 . RbBS3 (P21/c, a=7.082(2) Å, b=11.863(4) Å, c=5.794(2) Å, β=106.54(2)°) was prepared as colourless, plate-shaped crystals by reaction of stoichiometric amounts of rubidium sulfide, boron, and sulfur at 600°C and subsequent annealing. TlBS3 (P21/c, a=6.874(3) Å, b=11.739(3) Å, c=5.775(2) Å, β=113.08(2)°) which is isotypic with RbBS3 was synthesized from a sample of the composition Tl2S · 2 B2S3. The glassy product which was obtained after 7 h at 850°C was annealed in a two zone furnace for 400 h at 400→350°C. Yellow crystals of TlBS3 formed at the warmer side of the furnace. Tl3B3S10 (P1 , a=6.828(2) Å, b=7.713(2) Å, c=13.769(5) Å, α=104.32(2)°, β=94.03(3)°, γ=94.69(2)°) was prepared as yellow plates from stoichiometric amounts of thallium sulfide, boron, and sulfur at 850°C and subsequent annealing. All compounds contain tetrahedrally coordinated boron. The crystal structures consist of polymeric anion chains. In the case of RbBS3 and TlBS3 nonplanar five-membered B2S3 rings are spirocyclically connected via the boron atoms. To obtain the anionic structure of Tl3B3S10 every third B2S3 ring of the polymeric chains of MBS3 is to be substituted by a six-membered B(S2)2B ring.  相似文献   
8.
Motivated by the possibility of modifying energy levels of a molecule without substantially changing its band gap, the impact of gradual fluorination on the optical and structural properties of zinc phthalocyanine (FnZnPc) thin films and the electronic characteristics of FnZnPc/C60 (n = 0, 4, 8, 16) bilayer cells is investigated. UV–vis measurements reveal similar Q‐ and B‐band absorption of FnZnPc thin films with n = 0, 4, 8, whereas for F16ZnPc a different absorption pattern is detected. A correlation between structure and electronic transport is deduced. For F4ZnPc/C60 cells, the enhanced long range order supports fill factors of 55% and an increase of the short circuit current density by 18%, compared to ZnPc/C60. As a parameter being sensitive to the organic/organic interface energetics, the open circuit voltage is analyzed. An enhancement of this quantity by 27% and 50% is detected for F4ZnPc‐ and F8ZnPc‐based devices, respectively, and is attributed to an increase of the quasi‐Fermi level splitting at the donor/acceptor interface. In contrast, for F16ZnPc/C60 a decrease of the open circuit voltage is observed. Complementary photoelectron spectroscopy, external quantum efficiency, and photoluminescence measurements reveal a different working principle, which is ascribed to the particular energy level alignment at the interface of the photoactive materials.  相似文献   
9.
Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.  相似文献   
10.
Despite intensive scientific efforts on the development of organic batteries, their full potential is still not being realized. The individual components, such as electrode materials and electrolytes, are in most cases developed independently and are not adjusted to each other. In this context, we report on the performance optimization of a full-organic solid-state battery system by the mutual adaptation of the electrode materials and an ionic liquid (IL)-based gel polymer electrolyte (GPE). The formulation of the latter was designed for a one-step manufacturing approach and can be applied directly to the electrode surface, where it is UV-cured to yield the GPE without further post-treatment steps. Herein, a special focus was placed on the applicability in industrial processes. A first significant capacity increase was achieved by the incorporation of the IL into the electrode composite. Furthermore, the GPE composition was adapted applying acrylate- and methacrylate-based monomers and combinations thereof with the premise of a fast curing step. Furthermore, the amount of IL was varied, and all combinations were evaluated for their final performance in cells. The latter variation revealed that a high ionic conductivity is not the only determining factor for a good cell performance. Next to a sufficient conductivity, the interaction between electrode and electrolyte plays a key role for the cell performance as it enhances the accessibility of the counter ions to the redox-active sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号