首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   1篇
无线电   1篇
  2020年   1篇
  2017年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In this report, we demonstrate scanning tunneling microscopy and spectroscopy on thin films of lauryl amine (LAM) and octadecane thiol (ODT) protected gold nanoparticles. We show that the zero current in the I-V curves (measure of Coulomb blockade (CB) of the nanoparticles) depends on the properties of the spacer molecule. In both the cases the gap voltage and the tunneling current at which the images are obtained are quite different which is further confirmed from the fitting performed based on the orthodox theory. The values for the capacitance and charging energy obtained from the fitting for ODT capped particles are comparable to the values obtained using spherical capacitor model. In contrast, values of these parameters were found to differ for LAM capped nanoparticles. While imaging, ODT capped nanoparticles were observed to drag along the scan direction leading to ordering of particles. Images of LAM capped gold nanoparticles show local ordering in self-assembly of particles although no evidence of large scale ordering in spatial Fourier transform was seen. These observations suggest that nanoparticles with larger CB would be imaged nonevasively in contrast to small CB systems for which tip induced effects will be dominant. In both the systems the current was found to rise faster than theoretical curves based on the orthodox theory suggesting that mechanism of charge transfer in this case may involve field emission rather than tunneling through a rectangular barrier. An attempt has been made to explain charge transfer based on Fowler-Nordheim (F-N) plots of the I-V curves.  相似文献   
2.
The authors describe a sensor capable of detecting methanol adulteration of ethanol. The sensor is based on the use of quartz tuning forks (QTFs) that were functionalized with polymer wires made from a combination of polystyrene (PS) and aniline. Exposure to organic vapors causes the resonance frequency of the functionalized QTF to change, and this can be used to identify the type and concentration of the analyte. A mixture of methanol and ethanol vapors in varying concentrations was exposed to the QTF polymer system. The resulting shift in the resonance frequency of the QTF was firstly used to determine the concentration of alcohol vapor, which is reflected in the amount of shift. Secondly, the nature of change in resonance frequency was used to determine the type of alcohol exposed to the sensor. The sensitivity and selectivity of the sensors to ethanol and methanol vapors has been investigated. A portable hand-held prototype sensor has been developed which displays the percentage of two alcohols it is exposed to. It can detect ethanol adulteration where the methanol concentration is as low as 5%.
Graphical abstract Spring loaded Quartz Tuning Fork sensors functionalized with polystyrene-aniline wires exhibit opposite responses (increase and decrease in frequency) to vapors of ethanol and methanol respectively.The methanol adulteration of ethanol solutions may thus be detected by sensing their vapors.
  相似文献   
3.
Journal of Electronic Materials - In this paper, the electromagnetic interference shielding effectiveness (EMI-SE) of nickel (Ni) nanoparticle-filled high-performance polyetherketone (PEK)...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号