首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109158篇
  免费   17639篇
  国内免费   5476篇
化学   75512篇
晶体学   902篇
力学   3237篇
综合类   151篇
数学   7535篇
物理学   20304篇
无线电   24632篇
  2024年   182篇
  2023年   1284篇
  2022年   1617篇
  2021年   2266篇
  2020年   3593篇
  2019年   4753篇
  2018年   2919篇
  2017年   2436篇
  2016年   6074篇
  2015年   6096篇
  2014年   6606篇
  2013年   8546篇
  2012年   8372篇
  2011年   7842篇
  2010年   6661篇
  2009年   6627篇
  2008年   6899篇
  2007年   6042篇
  2006年   5406篇
  2005年   5336篇
  2004年   4276篇
  2003年   3662篇
  2002年   4231篇
  2001年   3067篇
  2000年   2913篇
  1999年   1921篇
  1998年   1314篇
  1997年   1269篇
  1996年   1340篇
  1995年   1074篇
  1994年   963篇
  1993年   853篇
  1992年   817篇
  1991年   685篇
  1990年   539篇
  1989年   472篇
  1988年   386篇
  1987年   329篇
  1986年   266篇
  1985年   328篇
  1984年   228篇
  1983年   195篇
  1982年   203篇
  1981年   150篇
  1980年   124篇
  1978年   117篇
  1977年   107篇
  1976年   119篇
  1975年   131篇
  1973年   126篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Thin films with a nanometer-scale thickness are of great interest to both scientific and industrial communities due to their numerous applications and unique behaviors different from the bulk. However, the understanding of thin-film mechanics is still greatly hampered due to their intrinsic fragility and the lack of commercially available experimental instruments. In this review, we first discuss the progression of thin-film mechanical testing methods based on the supporting substrate: film-on-solid substrate method, film-on-water tensile tests, and water-assisted free-standing tensile tests. By comparing past studies on a model polymer, polystyrene, the effect of different substrates and confinement effect on the thin-film mechanics is evaluated. These techniques have generated fruitful scientific knowledge in the field of organic semiconductors for the understanding of structure–mechanical property relationships. We end this review by providing our perspective for their bright prospects in much broader applications and materials of interest.  相似文献   
2.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
3.
Sun  J.  Yuan  H. 《Experimental Mechanics》2021,61(3):565-580
Experimental Mechanics - Temperature gradients significantly affect the material fatigue process. A reliable and robust test procedure is needed for quantifying the effects of temperature gradients...  相似文献   
4.
Kobayashi  M.  Zhang  Y.  Ishikawa  H.  Sun  J.  Oddershede  J.  Juul Jensen  D.  Miura  H. 《Experimental Mechanics》2021,61(5):817-828
Experimental Mechanics - The internal strain distribution developing during plastic deformation is important for understanding the mechanical properties of polycrystalline materials. Such...  相似文献   
5.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
6.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
7.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
8.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
9.
Journal of Radioanalytical and Nuclear Chemistry - The simplified 8-oxide system (SiO2-B2O3-Na2O-Al2O3-CaO-TiO2-MoO3-La2O3) has been prepared under two types of cooling methods, and analyzed with...  相似文献   
10.
3,4-Difluorobenzyl(1-ethyl-5-(4-((4-hydroxypiperidin-1-yl)-methyl)thiazol-2-yl)-1H-indol-3-yl)carbamate (NAI59), a small molecule with outstanding therapeutic effectiveness to anti-pulmonary fibrosis, was developed as an autotaxin inhibitor candidate compound. To evaluate the pharmacokinetics and plasma protein binding of NAI59, a UPLC–MS/MS method was developed to quantify NAI59 in plasma and phosphate-buffered saline. The calibration curve linearity ranged from 9.95 to 1990.00 ng/mL in plasma. The accuracy was −6.8 to 5.9%, and the intra- and inter-day precision was within 15%. The matrix effect and recovery, as well as dilution integrity, were within the criteria. The chromatographic and mass spectrometric conditions were also feasible to determine phosphate-buffered saline samples, and it has been proved that this method exhibits good precision and accuracy in the range of 9.95–497.50 ng/mL in phosphate-buffered saline. This study is the first to determine the pharmacokinetics, absolute bioavailability, and plasma protein binding of NAI59 in rats using this established method. Therefore, the pharmacokinetic profiles of NAI59 showed a dose-dependent relationship after oral administration, and the absolute bioavailability in rats was 6.3%. In addition, the results of protein binding showed that the combining capacity of NAI59 with plasma protein attained 90% and increased with the increase in drug concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号