首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   5篇
无线电   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2007年   2篇
  2006年   2篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.

The smart grid control applications necessitate real-time communication systems with time efficiency for real-time monitoring, measurement, and control. Time-efficient communication systems should have the ability to function in severe propagation conditions in smart grid applications. The data/packet communications need to be maintained by synchronized timing and reliability through equally considering the signal deterioration occurrences, which are propagation delay, phase errors and channel conditions. Phase synchronization plays a vital part in the digital smart grid to get precise and real-time control measurement information. IEEE C37.118 and IEC 61850 had implemented for the synchronization communication to measure as well as control the smart grid applications. Both IEEE C37.118 and IEC 61850 experienced a huge propagation and packet delays due to synchronization precision issues. Because of these delays and errors, measurement and monitoring of the smart grid application in real-time is not accurate. Therefore, it has been investigated that the time synchronization in real-time is a critical challenge in smart grid applications, and for this issue, other errors raised consequently. The existing communication systems are designed with the phasor measurement unit (PMU) along with communication protocol IEEE C37.118 and uses the GPS timestamps as the reference clock stamps. The absence of GPS increases the clock offsets, which surely can hamper the synchronization process and the full control measurement system that can be imprecise. Therefore, to reduce this clock offsets, a new algorithm is needed which may consider any alternative reference timestamps rather than GPS. The revolutionary Artificial Intelligence (AI) enables the industrial revolution to provide a significant performance to engineering solutions. Therefore, this article proposed the AI-based Synchronization scheme to mitigate smart grid timing issues. The backpropagation neural network is applied as the AI method that employs the timing estimations and error corrections for the precise performances. The novel AIFS scheme is considered the radio communication functionalities in order to connect the external timing server. The performance of the proposed AIFS scheme is evaluated using a MATLAB-based simulation approach. Simulation results show that the proposed scheme performs better than the existing system.

  相似文献   
2.
The backbone of diketopyrrolopyrrole-thiophene-vinylene-thiophene-based polymer semiconductors (PSCs) is modified with pyridine (Py) or bipyridine ligands to complex Fe(II) metal centers, allowing the metal–ligand complexes to act as mechanophores and dynamically crosslink the polymer chains. Mono- and bi-dentate ligands are observed to exhibit different degrees of bond strengths, which subsequently affect the mechanical properties of these Wolf-type-II metallopolymers. The counter ion also plays a crucial role, as it is observed that Py-Fe mechanophores with non-coordinating BPh4 counter ions (Py-FeB) exhibit better thin film ductility with lower elastic modulus, as compared to the coordinating chloro ligands (Py-FeC). Interestingly, besides mechanical robustness, the electrical charge carrier mobility can also be enhanced concurrently when incorporating Py-FeB mechanophores in PSCs. This is a unique observation among stretchable PSCs, especially that most reports to date describe a decreased mobility when the stretchability is improved. Next, it is determined that improvements to both mobility and stretchability are correlated to the solid-state molecular ordering and dynamics of coordination bonds under strain, as elucidated via techniques of grazing-incidence X-ray diffraction and X-ray absorption spectroscopy techniques, respectively. This study provides a viable approach to enhance both the mechanical and the electronic performance of polymer-based soft devices.  相似文献   
3.
Nonendocytotic transport is believed to play a role in the transmigration of particles less than 100 nm within biological systems. Determining the fundamental mechanism of this transport across cell membranes is essential if nanotechnology is to be utilized in general medical practice and may lead to methods of treating the deleterious internalization of ambient, possibly pollutant, nanoparticles. In order to gain a broader understanding of nonendocytotic transmembrane transport, it becomes essential to devise a method which allows the isolation of fundamental modes of transport such as passive Brownian diffusion through a membrane, as opposed to effusion-like transport of particles through transmembrane channels. The passive Brownian diffusion contribution was investigated using gold nanoparticles and mimetic biomembranes. Specifically, gold nanoparticle dispersions consisting of 7, 10, and 15 nm diameter particles were captured in giant unilamelar vesicles composed of phosphatidylcholine, phosphatidic acid, and cholesterol. Nonendocytotic transmembrane transport was modeled as the time derivative of the appearance of nanoparticles in the phosphate buffer outside the vesicles at 37 degrees C. The results show the transport rate to be zero; hence, a simple diffusive process of transmembrane transport is not supported.  相似文献   
4.
This study utilized Matrix Assisted Laser Desorption/Ionization Time‐of‐Flight Mass Spectrometry, Thermogravimetric Analysis, Differential Scanning Calorimetry, X‐Ray Diffraction, and Dielectric Analysis to assess the viscoelastic and structural properties of three generations of tert‐butyl and methyl ester, amide‐based dendrimers. The effect of generation number and functionality on glass‐transition temperatures and corresponding apparent activation energies, obtained via adherence to WLF behavior, were determined. Both were found to increase with increasing generation number and bulkiness of terminal functionalities. WLF constants, C1 and C2, allowed the determination of free volume, and thermal expansion coefficients, respectively. Secondary transitions, conforming to Arrhenius behavior, were also characterized and increased in temperature with generation number. The apparent activation energy was greater when the matrix was crystalline. Dielectric relaxation responses were analyzed to yield dielectric strengths of the molecular relaxations which increased with generation number and were comparable for both tert‐butyl and methyl esters in the glass‐transition region. Electrical properties of the dendrimers were dominated by ionic conductivity in the high temperature region. In order to unmask the glass transition, the data were treated in terms of the electric modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2025–2038, 1999  相似文献   
5.
Wireless Personal Communications - Handoff management is an indispensable component in supporting network mobility. The handoff situation raises while the Mobile Router (MR) or Mobile Node (MN)...  相似文献   
6.
The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-M?ssbauer spectroscopy.  相似文献   
7.
Density functional theory calculations were used to examine the formation of lithium halide and lithium alkoxide mixed aggregates with halomethyllithium carbenoids. These mixed aggregates may be the important intermediates in carbenoid reactions where lithium halides are formed as byproducts, or when the mixture has been exposed to small amounts of air. The calculations showed that in the gas phase and in THF solution, mixed dimers, trimers, and tetramers may coexist with free lithium carbenoids, depending on the lithium salt. The calculations also indicated that mixed aggregates may influence the activation free energies of cyclopropanation reactions of lithium carbenoids.  相似文献   
8.
Telecommunication Systems - In recent times, Heterogeneous Network (HetNet) achieves the capacity and coverage for indoors through the deployment of small cells i.e. femtocells (HeNodeBs). These...  相似文献   
9.
The reaction of V(III)(THF)3Cl3 with NEt(4)CN in acetonitrile (MeCN) forms (NEt4)3[V(III)(CN)6].4MeCN (1), which after characterization was used as a molecular building block toward the synthesis of Prussian blue structured magnets. The reaction of 1 with [Cr(II)(NCMe)4](BF4)2 forms Cr(II)(0.5)Cr(III)[V(II)(CN)6].zMeCN via internal electron transfer, whose structure and magnetic properties are dependent on the degree of solvation, z. When solvated, Cr(II)(0.5)Cr(III)[V(II)(CN)6].1.2MeCN (2) is a mixture of crystalline and amorphous fractions that yield a material with two magnetic phases: bulk ferrimagnetic phase/crystalline [faced-centered-cubic lattice with a = 10.55(2) A] and cluster-glass phase/amorphous. The bulk ferrimagnetic phase exhibits a critical temperature, Tc, of 110 K, while the amorphous cluster-glass phase exhibits a freezing temperature, Tf, of approximately 25 K. Amorphous Cr(II)(0.5)Cr(III)[V(II)(CN)6].0.1MeCN (3) was determined to be the pure cluster-glass phase. This is an overall enhancement of 85 K (350%) in the magnetic ordering temperature via solvation, z. The coercivity was also increased 4-fold from 890 (2) and 3900 Oe (3) via desolvation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号