首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   9篇
力学   1篇
数学   1篇
无线电   3篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2013年   2篇
  2011年   1篇
排序方式: 共有14条查询结果,搜索用时 62 毫秒
1.

The edge computing model offers an ultimate platform to support scientific and real-time workflow-based applications over the edge of the network. However, scientific workflow scheduling and execution still facing challenges such as response time management and latency time. This leads to deal with the acquisition delay of servers, deployed at the edge of a network and reduces the overall completion time of workflow. Previous studies show that existing scheduling methods consider the static performance of the server and ignore the impact of resource acquisition delay when scheduling workflow tasks. Our proposed method presented a meta-heuristic algorithm to schedule the scientific workflow and minimize the overall completion time by properly managing the acquisition and transmission delays. We carry out extensive experiments and evaluations based on commercial clouds and various scientific workflow templates. The proposed method has approximately 7.7% better performance than the baseline algorithms, particularly in overall deadline constraint that gives a success rate.

  相似文献   
2.
The VO(IV) complexes of tridentate ONN Schiff ligands were synthesized and characterized by IR, UV–Vis and elemental analysis. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron-withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < NO2. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the VO(IV) complexes were carried out in the range of 20–700 °C. The VOL1(OH2) and VOL2(OH2) decomposed in three steps, whereas the VOL3(OH2) and VOL4(OH2) complexes decomposed in two steps. The thermal decomposition of these complexes is closely related to the nature of the Schiff base ligands and proceeds via first-order kinetics. The structures of compounds were determined by ab initio calculations. The optimized molecular geometry and atomic charges were calculated using MP2 method with 6-31G(d) basis. The results suggested that, in the complexes, V(IV) ion is in square-pyramid N2O3 coordination geometry. Also the bond lengths and angles were studied and compared.  相似文献   
3.
Zotos  Euaggelos E.  Papadakis  K. E.  Suraj  Md Sanam  Mittal  Amit  Aggarwal  Rajiv 《Meccanica》2019,54(15):2339-2365

The motivation of this article is to numerically investigate the orbital dynamics of the planar post-Newtonian circular restricted problem of three bodies. By numerically integrating several large sets of initial conditions of orbits we obtain the basins of escape. Additionally, we determine the influence of the transition parameter on the orbital structure of the system, as well as on the families of simple symmetric periodic orbits. The networks and the stability of the symmetric periodic orbits are revealed, while the corresponding critical periodic solutions are also identified. The parametric evolution of the horizontal and the vertical stability of the periodic orbits are also monitored, as a function of the transition parameter.

  相似文献   
4.
In spite of the extensive attention paid on the development of various DNA detection strategies, very few studies have been reported regarding direct detection of DNA sequence and mutation in dsDNA. Here, we describe the feasibility of detection and discrimination of target DNA sequences and single base mutations (SBM) directly in double‐stranded oligonucleotides and PCR products without the need for denaturation of the target dsDNA samples. This goal was achieved by employing a peptide nucleic acid (PNA) chain, self‐assembled on the gold electrode as a probe, which binds to dsDNA and forms PNA‐dsDNA hybrid.  相似文献   
5.
Wireless Personal Communications - The edge computing paradigm has experienced quick development in recent years. This paradigm is featured by pushing the storage and computational resources closer...  相似文献   
6.
We report a microfluidic paper based analytical device implementing ion concentration polarization (ICP) for rapid pre-concentration of Escherichia coli in water. The fabricated device consists of a paper channel with a Nafion® membrane and in-built micro wire electrodes to supply electric voltage to induce the ICP effect. E. coli cells were stained with SYTO 9 and fluorescence was used as a sensing method. The device achieved high concentration factor up to 2 × 105 within minutes. The effect of total ion concentration, on ICP and fluorescence intensity was studied. The reported device and method are suitable and effective for detection of E. coli during ballast water quality monitoring, coastal water quality monitoring where high salinity water is present.  相似文献   
7.
The scope of this work is to reveal, by means of numerical methods, the escape process in a Hamiltonian system with five exits which describes the problem of rearrangement multichannel scattering. For determining the influence of the energy on the nature of the orbits we classify starting conditions of orbits in planes of two dimensions. All the complex basins of escape, associated with the five escape channels of the system, are illustrated by using color-coded diagrams. The distribution of time of the escape is correlated with the corresponding escape basins. The uncertainty (fractal) dimension along with the (boundary) basin entropy are computed for quantifying the degree of fractality of the dynamical system.  相似文献   
8.
Electroporation is a promising method to inactivate cells and it has wide applications in medical science, biology and environmental health. Here, we investigate the bacteria inactivation performance of two different microfluidic electroporation devices with rhombus and circular micropillars used for generating locally enhanced electric field strength. Experiments are carried out to characterize the inactivation performance (i.e., the log removal efficiency) of two types of bacteria: Escherichia coli (E. coli, gram-negative) and Enterococcus faecalis (E. faecalis, gram-positive) in these two microfluidic devices. We find that under the same applied electric field, the device with rhombus micropillars performs better than the device with circular micropillars for both E. coli and E. faecalis. Numerical simulations show that due to the corner-induced singularity effect, the maximum electric field enhancement is higher in the device with rhombus micropillars than that in the device with circular micropillars. We also study the effects of DC and AC electric fields and flowrate. Our experiments demonstrate that the use of the DC field achieves higher log removal efficiencies than the use of AC field.  相似文献   
9.
Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells. An optimal protocol was explored to prepare semiconductive quantum dots suspensions having high monodispersity with average hydrodynamic diameter of 13.2–35.0 nm. Micropipettes were fabricated to have inner tip diameters of approximately 200 nm that are larger than quantum dots for ejection but less than 500 nm to minimize damage to the cell membrane. We demonstrated the successful delivery of quantum dots via small electrical currents (–0.2 nA) through micropipettes into the cytoplasm of living human embryonic kidney cells (roughly 20–30 μm in length) using microelectrophoresis technique. This method is promising as a simple and general strategy for delivering a variety of nanoparticles into the cellular environment.  相似文献   
10.
Electroporation is a powerful tool for inactivating cells and transfecting biological cells and has applications in biology, genetic engineering, medicine, environment, and many others. We report a new continuous flow device embedded with insulating micropillars to achieve better performance of cell inactivation. The use of micropillars creates multiple electroporation zones with enhanced local electric field strengths. Using a model solution of Saccharomyces cerevisiae, we examined the inactivation performance of the device under various applied electric voltages and flow rates. Results from the numerical simulations and experiments showed that even with an induced transmembrane potential of 0.58 V, close to 63% of cell inactivation was achieved at a flow rate of 2.5 mL/h. This was higher than the 24% cell inactivation observed for a reference device without micropillars that was subjected to the same conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号