首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
化学   2篇
无线电   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Molecular weight is an important factor determining the morphology and performance of all‐polymer solar cells. Through the application of direct arylation polycondention, a series of batches of a fluorinated naphthalene diimide‐based acceptor polymer are prepared with molecular weight varying from Mn = 20 to 167 kDa. Used in conjunction with a common low bandgap donor polymer, the effect of acceptor molecular weight on solar cell performance, morphology, charge generation, and transport is explored. Increasing the molecular weight of the acceptor from Mn = 20 to 87 kDa is found to increase cell efficiency from 2.3% to 5.4% due to improved charge separation and transport. Further increasing the molecular weight to Mn = 167 kDa however is found to produce a drop in performance to 3% due to liquid–liquid phase separation which produces coarse domains, poor charge generation, and collection. In addition to device studies, a systematic investigation of the microstructure and photophysics of this system is presented using a combination of transmission electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, photoluminescence quenching, and transient absorption spectroscopy to provide a comprehensive understanding of the interplay between morphology, photophysics, and photovoltaic performance.  相似文献   
2.
Thiophene‐annulated naphthalene diimide (NTI)‐based molecules have recently emerged as an important class of n‐type electronic materials. However, their synthesis has predominantly been achieved by Stille or Suzuki coupling reactions despite the presence of a potential C?H bond in NTI. Additionally, the synthesis of NTI or more generally mono‐functionalization of naphthalene diimide (NDI) starts with a cumbersome bromination that results in a low yield, is unselective, and requires tedious purification. We herein thus address these issues via a two‐step C?H activation: a rhodium‐catalyzed direct C?H iodinization is first presented for NDI, followed by establishing an efficient direct arylation protocol for NTI with high yield and robustness. Coupling of up to four NTI units on a benzene or pyrene core is demonstrated along with other aryl bromide substrates. All the herein reported NTI‐based small molecules showed n‐type semiconductor behavior under air.  相似文献   
3.
The charge transport and microstructural properties of five different molecular weight (MW) batches of the naphthalenediimide‐thiophene copolymer P(NDI2OD‐T2) are investigated. In particular, the field‐effect transistor (FET) performance and thin‐film microstructure of samples with MW varying from Mn = 10 to 41 kDa are studied. Unlike conventional semiconducting polymers such as poly(3‐hexylthiophene) where FET mobility dramatically drops with decreasing molecular weight, the FET mobility of P(NDI2OD‐T2)‐based transistors processed from 1,2‐dichlorobenzene is found to increase with decreasing MW. Using a combination of grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, atomic force microscopy, and resonant soft X‐ray scattering, the increase in FET mobility with decreasing MW is attributed to the pronounced increase in the orientational correlation length (OCL) with decreasing MW. In particular, the OCL is observed to systematically increase from <100 nm for the highest MW samples to ≈1 µm for the lowest MW samples. The improvement in OCL and hence mobility for low MW samples is attributed to the lack of aggregation of low MW chains in solution promoting backbone ordering, with the pre‐aggregation of chains in 1,2‐dichlorobenzene found to suppress longer‐range liquid crystalline order.  相似文献   
4.
合成了一种新单体5,8-二(5′-溴-3,4-乙撑二氧噻基)-萘基喹喔啉,并通过Sonogashira偶合反应将此单体与带有不同长链烷氧基的对苯乙炔进行交替共聚,得到了聚[(2,5-二庚氧基-1,4-苯撑)乙炔撑-5,8-二(3,4-乙撑二氧噻基)-萘基喹喔啉](PI)和聚[(2,5-二十二烷氧基-1,4-苯撑)乙炔撑-5,8-二(3,4-乙撑二氧噻基)-萘基喹喔啉](PII)。采用核磁共振氢谱、傅里叶红外光谱、紫外-可见光谱、荧光光谱、循环伏安和热重分析对聚合物进行了表征。结果表明:共聚物PI和PII有相似的光学特性,均在490 nm处出现紫外-可见最大吸收峰,在613 nm处出现荧光最大发射峰;热稳定性和电化学活性较好;在-1.0~2.0 V出现电致变色现象,颜色由红色变为深蓝色。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号