首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   8篇
力学   1篇
物理学   1篇
无线电   4篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  1994年   1篇
  1972年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
Poly(acrylic acid) (PAA) and its salt poly(acrylate) (PA) have been synthesized through modified free radical polymerization in environmentally begin aqueous medium under ultrasound to make the process robust. The synthesized polymer is well-characterized through conventional techniques. Its salt is employed to produce highly stable and stimuli sensitive colloidal silver (Ag-PA sol) without using any additional reducing chemical reagents like sodium borohydride, ascorbic acid, hydrazine, etc or UV/Gamma radiation. A detailed mechanistic path of the polymerization and reduction of Ag+ on polyacrylate chains has been evaluated. Finally Ag-PA sol is used for pH sensing through naked eye to eliminate the need for sophisticated instrument for data collection. The present work focuses mainly the development of a low cost pH sensing system based on colorimetric ‘smart polymer’ having high practical utility. The unique structural and photo-physical features of nano-scaled materials open new opportunities for the applications of colorimetric pH sensor. In the present work, Ag nano-clusters capped by PA? are employed as an effective colorimetric pH sensor for the first time, requiring no further functionalization.  相似文献   
2.
This paper studies the removal of chemisorbed carboxylates and phosphonates from TiO2-coated galvanized steel using NaOH(aq). XPS and FTIR data show that NaOH(aq) is effective at desorbing these species and so is an alternative to gas phase processes (eg, plasma cleaning). Tribological investigations show that NaOH(aq)-treated surfaces show reduced friction and wear, relative to the “as-received” galvanized steel. This is ascribed to carbonate (present as an impurity in NaOH) that adsorbs to the surface of the substrate during NaOH(aq) immersion. Carbonate removal through sonication in water generates surfaces that show friction similar to “as-received” galvanized steel. This work is useful in areas (eg, automotive manufacturing), where the effective removal of lubricants following tribological contact is key to subsequent paint adhesion.  相似文献   
3.
The kinetics of the oxidation of sulfanilic acid (SAA) by sodium N-chloro-p-toluenesulfonamide (CAT) in the presence and absence of ruthenium(III) chloride have been investigated at 303 K in perchloric acid medium. The reaction shows a first-order dependence on [CAT]o and a non-linear dependence on both [SAA]o and [HClO4] for both the ruthenium(III)-catalyzed and uncatalyzed reactions. The order with respect to [RuIII] is unity. The effects of added p-toluenesulfonamide, halide, ionic strength, and dielectric constant have been studied. Activation parameters have been evaluated. The rate of the reaction increases in the D2O medium. The stoichiometry of the reaction was found to be 1:1 and the oxidation product of SAA was identified as N-hydroxyaminobenzene-4-sulfonic acid. The ruthenium(III)-catalyzed reactions are about four-fold faster than the uncatalyzed reactions. The protonated conjugate acid (CH3C6H4SO2NH2Cl+) is postulated as the reactive oxidizing species in both the cases.  相似文献   
4.
A simple tight upper bound on the BEP of 2DPSK over the AWGN channel with phase noise in the received signal is obtained. The phase is modeled as a Gaussian random process which is slowly varying compared to the bit rate so that a piecewise-constant approximation can be made. The bound is verified by computer simulations, and it provides good estimates of the error probability. It shows that for high SNR the error probability decreases as the reciprocal of the square-root of the SNR. The results are applicable in particular to heterodyne optical communications  相似文献   
5.

Today’s era is the era of smart and remote applications exploiting advancement in sensors, cloud, Internet of things etc. Major application is in healthcare monitoring and support using wireless body area network (WBAN) in which sensor nodes sense vital physiological parameters and send to server through sink i.e. smart phone nowadays for seamless monitoring. The most significant issue in such applications is energy efficiency which leads to enhanced network life time that ensures uninterrupted seamless services. From source to sink data transmission may occur considering three different scenarios: source to sink single hop direct data transmission irrespective of in-between node distance, source to sink multi hop data transmission in which transmission range of source node is fixed at a threshold to find next forwarder node and transmission range of source node is incremented by affixed value until data gets transmitted to sink. In this work WBAN having different network configurations based on fixed or random positions of nodes have been simulated. Different scenarios with fixed and varying number of nodes are framed and simulated using MATLAB 2020a for performance evaluation of proposed algorithm in terms of energy consumption, network lifetime, path loss etc. due to data transmission from source to sink. Experimental results show that incremental approach is better than direct one in terms of energy consumption, path loss and network lifetime. While selecting transmission range of a source node, it is considered to keep Specific Absorption Rate (SAR) lower to reduce impact on human tissue.

  相似文献   
6.
In this paper, we present a new MAC protocol satisfying with both high energy efficiency and low transmission latency at the same time over wireless sensor network, named as medium reservation preamble based MAC (MRPM). Unlike other synchronized duty cycle MACs, MRPM does not have separate time frames for SYNC and data traffics. Both traffics are integrated in a short listen period. Also, the channel contention is excluded from listen period and transferred to new period called contention period. The contention period precedes the listen period, and only transmitters wake up in this contention period and contend for medium reservation, whereas non-transmitters bypass it. These approaches enable MRPM to achieve adaptive duty cycle and quite short listen period. Moreover, MRPM uses carrier sensing information for advanced adaptive listening which makes packets to travel multiple hops away in a single sleep/listen cycle. The simulation results verify that MRPM has features of high energy efficiency and low latency.  相似文献   
7.
The initial stages of spontaneous spreading of a solvent drop (toluene) on the surface of a soluble polymer (polystyrene) have been studied with a high-speed camera. For drops of 1–4 μL volume, the increase in contact radius r can be described by a power law r μ ta r \propto {t^{\alpha }} , with the spreading exponent α = 0.50 and for the first ≈8 ms. Thereafter, the three-phase contact line was pinned leading to a macroscopic static contact angle of Θ0 = 12–15°. The insoluble liquids ethanol (α = 0.47, Θ0 = 0) and water (α = 0.35, Θ0 = 90°) showed a slower spreading. We attribute the fast spreading of toluene to the strong interaction with the polymer, like in reactive wetting. The finite macroscopic contact angle indicates the formation of a ridge by softening of polystyrene due to permeated toluene and the subsequent plastic deformation by the surface tension of the liquid. This interpretation is supported by experiments on polymers grafted from a silicon wafer. Toluene completely wets polymer brush surfaces. Transport of toluene through the vapor phase plays a significant role.  相似文献   
8.
Pollution and global warming are a few of the many reasons for environmental problems, due to industrial wastes and greenhouse gases, hence there are efforts to bring down such emissions to reduce pollution and combat global warming. In the present study, zinc oxide nanoparticles are green synthesized using cow dung as fuel, through combustion. Synthesized material was characterized by FTIR, XRD, UV, and FESEM. The as-prepared ZnO-GS NPs were employed as a transesterification catalyst for the preparation of biodiesel from discarded cooking oil. The biodiesel obtained is termed D-COME (discarded cooking oil methyl ester), which is blended with 20% commercial diesel (B20). Additionally, this blend, i.e., B20, is further blended with varying amounts of as-prepared ZnO-GS NPs, in order to ascertain its effects on the quality of emissions of various greenhouse gases such as hydrocarbons, COx, NOx. Moreover, the brake thermal efficiency (BTHE) and brake specific fuel consumption (BSFC) were studied for their blends. The blend (B20) with 30 mg of ZnO-GS, i.e., B20-30, displays the best performance and reduced emissions. Comparative studies revealed that the ZnO-GS NPs are as efficient as the ZnO-C NPs, indicating that the green synthetic approach employed does not affect the efficiency of the ZnO NPs.  相似文献   
9.
Blood samples stored as dried blood spots (DBSs) are emerging as a useful sampling and storage vehicle for a wide range of applications. Unfortunately, the surging popularity of DBS samples has not yet been accompanied by an improvement in automated techniques for extraction and analysis. As a first step towards overcoming this challenge, we have developed a prototype microfluidic system for quantification of amino acids in dried blood spots, in which analytes are extracted, mixed with internal standards, derivatized, and reconstituted for analysis by (off-line and in-line) tandem mass spectrometry. The new method is fast, robust, precise, and most importantly, compatible with automation. We propose that the new method can potentially contribute to a new generation of analytical techniques for quantifying analytes in DBS samples for a wide range of applications.  相似文献   
10.
Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号